Analyzing policy dependencies using historical information

Autonomic computing is central to the success of IT infrastructure deployment as its complexity and pervasiveness grows. This paper addresses one aspect of policy-based autonomic computing - the issue of identifying dependencies between policies, knowledge of which is useful to the policymaker while...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lotlikar, R.M., Chakravarthy, S., Vatsavai, R.R., Mohania, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue
container_start_page 79
container_title
container_volume
creator Lotlikar, R.M.
Chakravarthy, S.
Vatsavai, R.R.
Mohania, M.
description Autonomic computing is central to the success of IT infrastructure deployment as its complexity and pervasiveness grows. This paper addresses one aspect of policy-based autonomic computing - the issue of identifying dependencies between policies, knowledge of which is useful to the policymaker while defining or updating policies. These dependencies are determined via assesment of the impact of a policy on the sensors (measurable entities at runtime). Our approach uses a simple pragmatic model over the measured runtime information from the recent past. Both static and runtime information is combined to provide effective feedback.
doi_str_mv 10.1109/POLICY.2005.6
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1454305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1454305</ieee_id><sourcerecordid>1454305</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1f39daebe9e298fdbcbe848a02763eeb00b9e33b55f6e00e8a760d4eab2c0c613</originalsourceid><addsrcrecordid>eNotjLtOwzAUQC0hJKB0ZGLJDyRc27ETs1URj0qRytAOTJUfN3BR6kRxGMLXA4KznOFIh7EbDgXnYO5edu22eS0EgCr0GbuCShslhFbygq1T-oAfpFGGwyW730TbL18U37Jx6MkvWcARY8DoCVP2mX7LO6V5mMjbPqPYDdPJzjTEa3be2T7h-t8rdnh82DfPebt72jabNideqTnnnTTBokODwtRdcN5hXdYWRKUlogNwBqV0SnUaAbC2lYZQonXCg9dcrtjt35cQ8ThOdLLTcuSlKiUo-Q06IkbE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Analyzing policy dependencies using historical information</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lotlikar, R.M. ; Chakravarthy, S. ; Vatsavai, R.R. ; Mohania, M.</creator><creatorcontrib>Lotlikar, R.M. ; Chakravarthy, S. ; Vatsavai, R.R. ; Mohania, M.</creatorcontrib><description>Autonomic computing is central to the success of IT infrastructure deployment as its complexity and pervasiveness grows. This paper addresses one aspect of policy-based autonomic computing - the issue of identifying dependencies between policies, knowledge of which is useful to the policymaker while defining or updating policies. These dependencies are determined via assesment of the impact of a policy on the sensors (measurable entities at runtime). Our approach uses a simple pragmatic model over the measured runtime information from the recent past. Both static and runtime information is combined to provide effective feedback.</description><identifier>ISBN: 0769522653</identifier><identifier>ISBN: 9780769522654</identifier><identifier>DOI: 10.1109/POLICY.2005.6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Computer science ; Costs ; Feedback ; Information analysis ; Logic programming ; Pervasive computing ; Quality of service ; Runtime</subject><ispartof>Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY'05), 2005, p.79-88</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1454305$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1454305$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lotlikar, R.M.</creatorcontrib><creatorcontrib>Chakravarthy, S.</creatorcontrib><creatorcontrib>Vatsavai, R.R.</creatorcontrib><creatorcontrib>Mohania, M.</creatorcontrib><title>Analyzing policy dependencies using historical information</title><title>Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY'05)</title><addtitle>POLICY</addtitle><description>Autonomic computing is central to the success of IT infrastructure deployment as its complexity and pervasiveness grows. This paper addresses one aspect of policy-based autonomic computing - the issue of identifying dependencies between policies, knowledge of which is useful to the policymaker while defining or updating policies. These dependencies are determined via assesment of the impact of a policy on the sensors (measurable entities at runtime). Our approach uses a simple pragmatic model over the measured runtime information from the recent past. Both static and runtime information is combined to provide effective feedback.</description><subject>Artificial intelligence</subject><subject>Computer science</subject><subject>Costs</subject><subject>Feedback</subject><subject>Information analysis</subject><subject>Logic programming</subject><subject>Pervasive computing</subject><subject>Quality of service</subject><subject>Runtime</subject><isbn>0769522653</isbn><isbn>9780769522654</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjLtOwzAUQC0hJKB0ZGLJDyRc27ETs1URj0qRytAOTJUfN3BR6kRxGMLXA4KznOFIh7EbDgXnYO5edu22eS0EgCr0GbuCShslhFbygq1T-oAfpFGGwyW730TbL18U37Jx6MkvWcARY8DoCVP2mX7LO6V5mMjbPqPYDdPJzjTEa3be2T7h-t8rdnh82DfPebt72jabNideqTnnnTTBokODwtRdcN5hXdYWRKUlogNwBqV0SnUaAbC2lYZQonXCg9dcrtjt35cQ8ThOdLLTcuSlKiUo-Q06IkbE</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Lotlikar, R.M.</creator><creator>Chakravarthy, S.</creator><creator>Vatsavai, R.R.</creator><creator>Mohania, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Analyzing policy dependencies using historical information</title><author>Lotlikar, R.M. ; Chakravarthy, S. ; Vatsavai, R.R. ; Mohania, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1f39daebe9e298fdbcbe848a02763eeb00b9e33b55f6e00e8a760d4eab2c0c613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Artificial intelligence</topic><topic>Computer science</topic><topic>Costs</topic><topic>Feedback</topic><topic>Information analysis</topic><topic>Logic programming</topic><topic>Pervasive computing</topic><topic>Quality of service</topic><topic>Runtime</topic><toplevel>online_resources</toplevel><creatorcontrib>Lotlikar, R.M.</creatorcontrib><creatorcontrib>Chakravarthy, S.</creatorcontrib><creatorcontrib>Vatsavai, R.R.</creatorcontrib><creatorcontrib>Mohania, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lotlikar, R.M.</au><au>Chakravarthy, S.</au><au>Vatsavai, R.R.</au><au>Mohania, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Analyzing policy dependencies using historical information</atitle><btitle>Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY'05)</btitle><stitle>POLICY</stitle><date>2005</date><risdate>2005</risdate><spage>79</spage><epage>88</epage><pages>79-88</pages><isbn>0769522653</isbn><isbn>9780769522654</isbn><abstract>Autonomic computing is central to the success of IT infrastructure deployment as its complexity and pervasiveness grows. This paper addresses one aspect of policy-based autonomic computing - the issue of identifying dependencies between policies, knowledge of which is useful to the policymaker while defining or updating policies. These dependencies are determined via assesment of the impact of a policy on the sensors (measurable entities at runtime). Our approach uses a simple pragmatic model over the measured runtime information from the recent past. Both static and runtime information is combined to provide effective feedback.</abstract><pub>IEEE</pub><doi>10.1109/POLICY.2005.6</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769522653
ispartof Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY'05), 2005, p.79-88
issn
language eng
recordid cdi_ieee_primary_1454305
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial intelligence
Computer science
Costs
Feedback
Information analysis
Logic programming
Pervasive computing
Quality of service
Runtime
title Analyzing policy dependencies using historical information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Analyzing%20policy%20dependencies%20using%20historical%20information&rft.btitle=Sixth%20IEEE%20International%20Workshop%20on%20Policies%20for%20Distributed%20Systems%20and%20Networks%20(POLICY'05)&rft.au=Lotlikar,%20R.M.&rft.date=2005&rft.spage=79&rft.epage=88&rft.pages=79-88&rft.isbn=0769522653&rft.isbn_list=9780769522654&rft_id=info:doi/10.1109/POLICY.2005.6&rft_dat=%3Cieee_6IE%3E1454305%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1454305&rfr_iscdi=true