Analyzing policy dependencies using historical information
Autonomic computing is central to the success of IT infrastructure deployment as its complexity and pervasiveness grows. This paper addresses one aspect of policy-based autonomic computing - the issue of identifying dependencies between policies, knowledge of which is useful to the policymaker while...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 88 |
---|---|
container_issue | |
container_start_page | 79 |
container_title | |
container_volume | |
creator | Lotlikar, R.M. Chakravarthy, S. Vatsavai, R.R. Mohania, M. |
description | Autonomic computing is central to the success of IT infrastructure deployment as its complexity and pervasiveness grows. This paper addresses one aspect of policy-based autonomic computing - the issue of identifying dependencies between policies, knowledge of which is useful to the policymaker while defining or updating policies. These dependencies are determined via assesment of the impact of a policy on the sensors (measurable entities at runtime). Our approach uses a simple pragmatic model over the measured runtime information from the recent past. Both static and runtime information is combined to provide effective feedback. |
doi_str_mv | 10.1109/POLICY.2005.6 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1454305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1454305</ieee_id><sourcerecordid>1454305</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1f39daebe9e298fdbcbe848a02763eeb00b9e33b55f6e00e8a760d4eab2c0c613</originalsourceid><addsrcrecordid>eNotjLtOwzAUQC0hJKB0ZGLJDyRc27ETs1URj0qRytAOTJUfN3BR6kRxGMLXA4KznOFIh7EbDgXnYO5edu22eS0EgCr0GbuCShslhFbygq1T-oAfpFGGwyW730TbL18U37Jx6MkvWcARY8DoCVP2mX7LO6V5mMjbPqPYDdPJzjTEa3be2T7h-t8rdnh82DfPebt72jabNideqTnnnTTBokODwtRdcN5hXdYWRKUlogNwBqV0SnUaAbC2lYZQonXCg9dcrtjt35cQ8ThOdLLTcuSlKiUo-Q06IkbE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Analyzing policy dependencies using historical information</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lotlikar, R.M. ; Chakravarthy, S. ; Vatsavai, R.R. ; Mohania, M.</creator><creatorcontrib>Lotlikar, R.M. ; Chakravarthy, S. ; Vatsavai, R.R. ; Mohania, M.</creatorcontrib><description>Autonomic computing is central to the success of IT infrastructure deployment as its complexity and pervasiveness grows. This paper addresses one aspect of policy-based autonomic computing - the issue of identifying dependencies between policies, knowledge of which is useful to the policymaker while defining or updating policies. These dependencies are determined via assesment of the impact of a policy on the sensors (measurable entities at runtime). Our approach uses a simple pragmatic model over the measured runtime information from the recent past. Both static and runtime information is combined to provide effective feedback.</description><identifier>ISBN: 0769522653</identifier><identifier>ISBN: 9780769522654</identifier><identifier>DOI: 10.1109/POLICY.2005.6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Computer science ; Costs ; Feedback ; Information analysis ; Logic programming ; Pervasive computing ; Quality of service ; Runtime</subject><ispartof>Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY'05), 2005, p.79-88</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1454305$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1454305$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lotlikar, R.M.</creatorcontrib><creatorcontrib>Chakravarthy, S.</creatorcontrib><creatorcontrib>Vatsavai, R.R.</creatorcontrib><creatorcontrib>Mohania, M.</creatorcontrib><title>Analyzing policy dependencies using historical information</title><title>Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY'05)</title><addtitle>POLICY</addtitle><description>Autonomic computing is central to the success of IT infrastructure deployment as its complexity and pervasiveness grows. This paper addresses one aspect of policy-based autonomic computing - the issue of identifying dependencies between policies, knowledge of which is useful to the policymaker while defining or updating policies. These dependencies are determined via assesment of the impact of a policy on the sensors (measurable entities at runtime). Our approach uses a simple pragmatic model over the measured runtime information from the recent past. Both static and runtime information is combined to provide effective feedback.</description><subject>Artificial intelligence</subject><subject>Computer science</subject><subject>Costs</subject><subject>Feedback</subject><subject>Information analysis</subject><subject>Logic programming</subject><subject>Pervasive computing</subject><subject>Quality of service</subject><subject>Runtime</subject><isbn>0769522653</isbn><isbn>9780769522654</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjLtOwzAUQC0hJKB0ZGLJDyRc27ETs1URj0qRytAOTJUfN3BR6kRxGMLXA4KznOFIh7EbDgXnYO5edu22eS0EgCr0GbuCShslhFbygq1T-oAfpFGGwyW730TbL18U37Jx6MkvWcARY8DoCVP2mX7LO6V5mMjbPqPYDdPJzjTEa3be2T7h-t8rdnh82DfPebt72jabNideqTnnnTTBokODwtRdcN5hXdYWRKUlogNwBqV0SnUaAbC2lYZQonXCg9dcrtjt35cQ8ThOdLLTcuSlKiUo-Q06IkbE</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Lotlikar, R.M.</creator><creator>Chakravarthy, S.</creator><creator>Vatsavai, R.R.</creator><creator>Mohania, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Analyzing policy dependencies using historical information</title><author>Lotlikar, R.M. ; Chakravarthy, S. ; Vatsavai, R.R. ; Mohania, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1f39daebe9e298fdbcbe848a02763eeb00b9e33b55f6e00e8a760d4eab2c0c613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Artificial intelligence</topic><topic>Computer science</topic><topic>Costs</topic><topic>Feedback</topic><topic>Information analysis</topic><topic>Logic programming</topic><topic>Pervasive computing</topic><topic>Quality of service</topic><topic>Runtime</topic><toplevel>online_resources</toplevel><creatorcontrib>Lotlikar, R.M.</creatorcontrib><creatorcontrib>Chakravarthy, S.</creatorcontrib><creatorcontrib>Vatsavai, R.R.</creatorcontrib><creatorcontrib>Mohania, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lotlikar, R.M.</au><au>Chakravarthy, S.</au><au>Vatsavai, R.R.</au><au>Mohania, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Analyzing policy dependencies using historical information</atitle><btitle>Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY'05)</btitle><stitle>POLICY</stitle><date>2005</date><risdate>2005</risdate><spage>79</spage><epage>88</epage><pages>79-88</pages><isbn>0769522653</isbn><isbn>9780769522654</isbn><abstract>Autonomic computing is central to the success of IT infrastructure deployment as its complexity and pervasiveness grows. This paper addresses one aspect of policy-based autonomic computing - the issue of identifying dependencies between policies, knowledge of which is useful to the policymaker while defining or updating policies. These dependencies are determined via assesment of the impact of a policy on the sensors (measurable entities at runtime). Our approach uses a simple pragmatic model over the measured runtime information from the recent past. Both static and runtime information is combined to provide effective feedback.</abstract><pub>IEEE</pub><doi>10.1109/POLICY.2005.6</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0769522653 |
ispartof | Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY'05), 2005, p.79-88 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1454305 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial intelligence Computer science Costs Feedback Information analysis Logic programming Pervasive computing Quality of service Runtime |
title | Analyzing policy dependencies using historical information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Analyzing%20policy%20dependencies%20using%20historical%20information&rft.btitle=Sixth%20IEEE%20International%20Workshop%20on%20Policies%20for%20Distributed%20Systems%20and%20Networks%20(POLICY'05)&rft.au=Lotlikar,%20R.M.&rft.date=2005&rft.spage=79&rft.epage=88&rft.pages=79-88&rft.isbn=0769522653&rft.isbn_list=9780769522654&rft_id=info:doi/10.1109/POLICY.2005.6&rft_dat=%3Cieee_6IE%3E1454305%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1454305&rfr_iscdi=true |