On the complexity of succinct zero-sum games

We study the complexity of solving succinct zero-sum games, i.e., the games whose payoff matrix M is given implicitly by a Boolean circuit C such that M(i, j) = C(i, j). We complement the known EXP-hardness of computing the exact value of a succinct zero-sum game by several results on approximating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fortnow, L., Impagliazzo, R., Kabanets, V., Umans, C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 332
container_issue
container_start_page 323
container_title
container_volume
creator Fortnow, L.
Impagliazzo, R.
Kabanets, V.
Umans, C.
description We study the complexity of solving succinct zero-sum games, i.e., the games whose payoff matrix M is given implicitly by a Boolean circuit C such that M(i, j) = C(i, j). We complement the known EXP-hardness of computing the exact value of a succinct zero-sum game by several results on approximating the value. (1) We prove that approximating the value of a succinct zero-sum game to within an additive factor is complete for the class promise-S/sub 2//sup p/, the "promise" version of S/sub 2//sup p/. To the best of our knowledge, it is the first natural problem shown complete for this class. (2) We describe a ZPP/sup NP/ algorithm for constructing approximately optimal strategies, and hence for approximating the value, of a given succinct zero-sum game. As a corollary, we obtain, in a uniform fashion, several complexity-theoretic results, e.g., a ZPP/sup NP/ algorithm for learning circuits for SAT (Bshouty et al., 1996) and a recent result by Cai (2001) that S/sub 2//sup p/ /spl sube/ ZPP/sup NP/. (3) We observe that approximating the value of a succinct zero-sum game to within a multiplicative factor is in PSPACE, and that it cannot be in promise-S/sub 2//sup p/ unless the polynomial-time hierarchy collapses. Thus, under a reasonable complexity-theoretic assumption, multiplicative factor approximation of succinct zero-sum games is strictly harder than additive factor approximation.
doi_str_mv 10.1109/CCC.2005.18
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1443096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1443096</ieee_id><sourcerecordid>1443096</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c9bf97a8a58f21ccdcf3f008d5fbca192027f49cd54a9dbc6662f9a8edef40063</originalsourceid><addsrcrecordid>eNotjDtPwzAURi0eEqF0YmTxD8Dp9dseUcRLqtSlzJVzbUNQ01RxKlF-PUXwLWc55yPklkPNOfhF0zS1ANA1d2ekEtpq5hTIc3IN1ngtpFH8glQnVTLg2l-ReSmfcJrSv11F7lc7On0kikO_36avbjrSIdNyQOx2ONHvNA6sHHr6HvpUbshlDtuS5v-ckbenx3Xzwpar59fmYck6bvXE0LfZ2-CCdllwxIhZZgAXdW4xcC9A2Kw8Rq2Cjy0aY0T2waWYsgIwckbu_n67lNJmP3Z9GI8brpQEb-QP_l9DaQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On the complexity of succinct zero-sum games</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fortnow, L. ; Impagliazzo, R. ; Kabanets, V. ; Umans, C.</creator><creatorcontrib>Fortnow, L. ; Impagliazzo, R. ; Kabanets, V. ; Umans, C.</creatorcontrib><description>We study the complexity of solving succinct zero-sum games, i.e., the games whose payoff matrix M is given implicitly by a Boolean circuit C such that M(i, j) = C(i, j). We complement the known EXP-hardness of computing the exact value of a succinct zero-sum game by several results on approximating the value. (1) We prove that approximating the value of a succinct zero-sum game to within an additive factor is complete for the class promise-S/sub 2//sup p/, the "promise" version of S/sub 2//sup p/. To the best of our knowledge, it is the first natural problem shown complete for this class. (2) We describe a ZPP/sup NP/ algorithm for constructing approximately optimal strategies, and hence for approximating the value, of a given succinct zero-sum game. As a corollary, we obtain, in a uniform fashion, several complexity-theoretic results, e.g., a ZPP/sup NP/ algorithm for learning circuits for SAT (Bshouty et al., 1996) and a recent result by Cai (2001) that S/sub 2//sup p/ /spl sube/ ZPP/sup NP/. (3) We observe that approximating the value of a succinct zero-sum game to within a multiplicative factor is in PSPACE, and that it cannot be in promise-S/sub 2//sup p/ unless the polynomial-time hierarchy collapses. Thus, under a reasonable complexity-theoretic assumption, multiplicative factor approximation of succinct zero-sum games is strictly harder than additive factor approximation.</description><identifier>ISSN: 1093-0159</identifier><identifier>ISBN: 0769523641</identifier><identifier>ISBN: 9780769523644</identifier><identifier>EISSN: 2575-8403</identifier><identifier>DOI: 10.1109/CCC.2005.18</identifier><language>eng</language><publisher>IEEE</publisher><subject>Circuits ; Complexity theory ; Computational complexity ; Computer science ; Game theory ; Linear programming ; Minimax techniques ; National electric code ; Polynomials ; Probability distribution</subject><ispartof>20th Annual IEEE Conference on Computational Complexity (CCC'05), 2005, p.323-332</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1443096$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1443096$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fortnow, L.</creatorcontrib><creatorcontrib>Impagliazzo, R.</creatorcontrib><creatorcontrib>Kabanets, V.</creatorcontrib><creatorcontrib>Umans, C.</creatorcontrib><title>On the complexity of succinct zero-sum games</title><title>20th Annual IEEE Conference on Computational Complexity (CCC'05)</title><addtitle>CCC</addtitle><description>We study the complexity of solving succinct zero-sum games, i.e., the games whose payoff matrix M is given implicitly by a Boolean circuit C such that M(i, j) = C(i, j). We complement the known EXP-hardness of computing the exact value of a succinct zero-sum game by several results on approximating the value. (1) We prove that approximating the value of a succinct zero-sum game to within an additive factor is complete for the class promise-S/sub 2//sup p/, the "promise" version of S/sub 2//sup p/. To the best of our knowledge, it is the first natural problem shown complete for this class. (2) We describe a ZPP/sup NP/ algorithm for constructing approximately optimal strategies, and hence for approximating the value, of a given succinct zero-sum game. As a corollary, we obtain, in a uniform fashion, several complexity-theoretic results, e.g., a ZPP/sup NP/ algorithm for learning circuits for SAT (Bshouty et al., 1996) and a recent result by Cai (2001) that S/sub 2//sup p/ /spl sube/ ZPP/sup NP/. (3) We observe that approximating the value of a succinct zero-sum game to within a multiplicative factor is in PSPACE, and that it cannot be in promise-S/sub 2//sup p/ unless the polynomial-time hierarchy collapses. Thus, under a reasonable complexity-theoretic assumption, multiplicative factor approximation of succinct zero-sum games is strictly harder than additive factor approximation.</description><subject>Circuits</subject><subject>Complexity theory</subject><subject>Computational complexity</subject><subject>Computer science</subject><subject>Game theory</subject><subject>Linear programming</subject><subject>Minimax techniques</subject><subject>National electric code</subject><subject>Polynomials</subject><subject>Probability distribution</subject><issn>1093-0159</issn><issn>2575-8403</issn><isbn>0769523641</isbn><isbn>9780769523644</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjDtPwzAURi0eEqF0YmTxD8Dp9dseUcRLqtSlzJVzbUNQ01RxKlF-PUXwLWc55yPklkPNOfhF0zS1ANA1d2ekEtpq5hTIc3IN1ngtpFH8glQnVTLg2l-ReSmfcJrSv11F7lc7On0kikO_36avbjrSIdNyQOx2ONHvNA6sHHr6HvpUbshlDtuS5v-ckbenx3Xzwpar59fmYck6bvXE0LfZ2-CCdllwxIhZZgAXdW4xcC9A2Kw8Rq2Cjy0aY0T2waWYsgIwckbu_n67lNJmP3Z9GI8brpQEb-QP_l9DaQ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Fortnow, L.</creator><creator>Impagliazzo, R.</creator><creator>Kabanets, V.</creator><creator>Umans, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>On the complexity of succinct zero-sum games</title><author>Fortnow, L. ; Impagliazzo, R. ; Kabanets, V. ; Umans, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c9bf97a8a58f21ccdcf3f008d5fbca192027f49cd54a9dbc6662f9a8edef40063</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Circuits</topic><topic>Complexity theory</topic><topic>Computational complexity</topic><topic>Computer science</topic><topic>Game theory</topic><topic>Linear programming</topic><topic>Minimax techniques</topic><topic>National electric code</topic><topic>Polynomials</topic><topic>Probability distribution</topic><toplevel>online_resources</toplevel><creatorcontrib>Fortnow, L.</creatorcontrib><creatorcontrib>Impagliazzo, R.</creatorcontrib><creatorcontrib>Kabanets, V.</creatorcontrib><creatorcontrib>Umans, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fortnow, L.</au><au>Impagliazzo, R.</au><au>Kabanets, V.</au><au>Umans, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On the complexity of succinct zero-sum games</atitle><btitle>20th Annual IEEE Conference on Computational Complexity (CCC'05)</btitle><stitle>CCC</stitle><date>2005</date><risdate>2005</risdate><spage>323</spage><epage>332</epage><pages>323-332</pages><issn>1093-0159</issn><eissn>2575-8403</eissn><isbn>0769523641</isbn><isbn>9780769523644</isbn><abstract>We study the complexity of solving succinct zero-sum games, i.e., the games whose payoff matrix M is given implicitly by a Boolean circuit C such that M(i, j) = C(i, j). We complement the known EXP-hardness of computing the exact value of a succinct zero-sum game by several results on approximating the value. (1) We prove that approximating the value of a succinct zero-sum game to within an additive factor is complete for the class promise-S/sub 2//sup p/, the "promise" version of S/sub 2//sup p/. To the best of our knowledge, it is the first natural problem shown complete for this class. (2) We describe a ZPP/sup NP/ algorithm for constructing approximately optimal strategies, and hence for approximating the value, of a given succinct zero-sum game. As a corollary, we obtain, in a uniform fashion, several complexity-theoretic results, e.g., a ZPP/sup NP/ algorithm for learning circuits for SAT (Bshouty et al., 1996) and a recent result by Cai (2001) that S/sub 2//sup p/ /spl sube/ ZPP/sup NP/. (3) We observe that approximating the value of a succinct zero-sum game to within a multiplicative factor is in PSPACE, and that it cannot be in promise-S/sub 2//sup p/ unless the polynomial-time hierarchy collapses. Thus, under a reasonable complexity-theoretic assumption, multiplicative factor approximation of succinct zero-sum games is strictly harder than additive factor approximation.</abstract><pub>IEEE</pub><doi>10.1109/CCC.2005.18</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1093-0159
ispartof 20th Annual IEEE Conference on Computational Complexity (CCC'05), 2005, p.323-332
issn 1093-0159
2575-8403
language eng
recordid cdi_ieee_primary_1443096
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Circuits
Complexity theory
Computational complexity
Computer science
Game theory
Linear programming
Minimax techniques
National electric code
Polynomials
Probability distribution
title On the complexity of succinct zero-sum games
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A11%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20the%20complexity%20of%20succinct%20zero-sum%20games&rft.btitle=20th%20Annual%20IEEE%20Conference%20on%20Computational%20Complexity%20(CCC'05)&rft.au=Fortnow,%20L.&rft.date=2005&rft.spage=323&rft.epage=332&rft.pages=323-332&rft.issn=1093-0159&rft.eissn=2575-8403&rft.isbn=0769523641&rft.isbn_list=9780769523644&rft_id=info:doi/10.1109/CCC.2005.18&rft_dat=%3Cieee_6IE%3E1443096%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1443096&rfr_iscdi=true