On the complexity of succinct zero-sum games
We study the complexity of solving succinct zero-sum games, i.e., the games whose payoff matrix M is given implicitly by a Boolean circuit C such that M(i, j) = C(i, j). We complement the known EXP-hardness of computing the exact value of a succinct zero-sum game by several results on approximating...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 332 |
---|---|
container_issue | |
container_start_page | 323 |
container_title | |
container_volume | |
creator | Fortnow, L. Impagliazzo, R. Kabanets, V. Umans, C. |
description | We study the complexity of solving succinct zero-sum games, i.e., the games whose payoff matrix M is given implicitly by a Boolean circuit C such that M(i, j) = C(i, j). We complement the known EXP-hardness of computing the exact value of a succinct zero-sum game by several results on approximating the value. (1) We prove that approximating the value of a succinct zero-sum game to within an additive factor is complete for the class promise-S/sub 2//sup p/, the "promise" version of S/sub 2//sup p/. To the best of our knowledge, it is the first natural problem shown complete for this class. (2) We describe a ZPP/sup NP/ algorithm for constructing approximately optimal strategies, and hence for approximating the value, of a given succinct zero-sum game. As a corollary, we obtain, in a uniform fashion, several complexity-theoretic results, e.g., a ZPP/sup NP/ algorithm for learning circuits for SAT (Bshouty et al., 1996) and a recent result by Cai (2001) that S/sub 2//sup p/ /spl sube/ ZPP/sup NP/. (3) We observe that approximating the value of a succinct zero-sum game to within a multiplicative factor is in PSPACE, and that it cannot be in promise-S/sub 2//sup p/ unless the polynomial-time hierarchy collapses. Thus, under a reasonable complexity-theoretic assumption, multiplicative factor approximation of succinct zero-sum games is strictly harder than additive factor approximation. |
doi_str_mv | 10.1109/CCC.2005.18 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1443096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1443096</ieee_id><sourcerecordid>1443096</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c9bf97a8a58f21ccdcf3f008d5fbca192027f49cd54a9dbc6662f9a8edef40063</originalsourceid><addsrcrecordid>eNotjDtPwzAURi0eEqF0YmTxD8Dp9dseUcRLqtSlzJVzbUNQ01RxKlF-PUXwLWc55yPklkPNOfhF0zS1ANA1d2ekEtpq5hTIc3IN1ngtpFH8glQnVTLg2l-ReSmfcJrSv11F7lc7On0kikO_36avbjrSIdNyQOx2ONHvNA6sHHr6HvpUbshlDtuS5v-ckbenx3Xzwpar59fmYck6bvXE0LfZ2-CCdllwxIhZZgAXdW4xcC9A2Kw8Rq2Cjy0aY0T2waWYsgIwckbu_n67lNJmP3Z9GI8brpQEb-QP_l9DaQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On the complexity of succinct zero-sum games</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fortnow, L. ; Impagliazzo, R. ; Kabanets, V. ; Umans, C.</creator><creatorcontrib>Fortnow, L. ; Impagliazzo, R. ; Kabanets, V. ; Umans, C.</creatorcontrib><description>We study the complexity of solving succinct zero-sum games, i.e., the games whose payoff matrix M is given implicitly by a Boolean circuit C such that M(i, j) = C(i, j). We complement the known EXP-hardness of computing the exact value of a succinct zero-sum game by several results on approximating the value. (1) We prove that approximating the value of a succinct zero-sum game to within an additive factor is complete for the class promise-S/sub 2//sup p/, the "promise" version of S/sub 2//sup p/. To the best of our knowledge, it is the first natural problem shown complete for this class. (2) We describe a ZPP/sup NP/ algorithm for constructing approximately optimal strategies, and hence for approximating the value, of a given succinct zero-sum game. As a corollary, we obtain, in a uniform fashion, several complexity-theoretic results, e.g., a ZPP/sup NP/ algorithm for learning circuits for SAT (Bshouty et al., 1996) and a recent result by Cai (2001) that S/sub 2//sup p/ /spl sube/ ZPP/sup NP/. (3) We observe that approximating the value of a succinct zero-sum game to within a multiplicative factor is in PSPACE, and that it cannot be in promise-S/sub 2//sup p/ unless the polynomial-time hierarchy collapses. Thus, under a reasonable complexity-theoretic assumption, multiplicative factor approximation of succinct zero-sum games is strictly harder than additive factor approximation.</description><identifier>ISSN: 1093-0159</identifier><identifier>ISBN: 0769523641</identifier><identifier>ISBN: 9780769523644</identifier><identifier>EISSN: 2575-8403</identifier><identifier>DOI: 10.1109/CCC.2005.18</identifier><language>eng</language><publisher>IEEE</publisher><subject>Circuits ; Complexity theory ; Computational complexity ; Computer science ; Game theory ; Linear programming ; Minimax techniques ; National electric code ; Polynomials ; Probability distribution</subject><ispartof>20th Annual IEEE Conference on Computational Complexity (CCC'05), 2005, p.323-332</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1443096$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1443096$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fortnow, L.</creatorcontrib><creatorcontrib>Impagliazzo, R.</creatorcontrib><creatorcontrib>Kabanets, V.</creatorcontrib><creatorcontrib>Umans, C.</creatorcontrib><title>On the complexity of succinct zero-sum games</title><title>20th Annual IEEE Conference on Computational Complexity (CCC'05)</title><addtitle>CCC</addtitle><description>We study the complexity of solving succinct zero-sum games, i.e., the games whose payoff matrix M is given implicitly by a Boolean circuit C such that M(i, j) = C(i, j). We complement the known EXP-hardness of computing the exact value of a succinct zero-sum game by several results on approximating the value. (1) We prove that approximating the value of a succinct zero-sum game to within an additive factor is complete for the class promise-S/sub 2//sup p/, the "promise" version of S/sub 2//sup p/. To the best of our knowledge, it is the first natural problem shown complete for this class. (2) We describe a ZPP/sup NP/ algorithm for constructing approximately optimal strategies, and hence for approximating the value, of a given succinct zero-sum game. As a corollary, we obtain, in a uniform fashion, several complexity-theoretic results, e.g., a ZPP/sup NP/ algorithm for learning circuits for SAT (Bshouty et al., 1996) and a recent result by Cai (2001) that S/sub 2//sup p/ /spl sube/ ZPP/sup NP/. (3) We observe that approximating the value of a succinct zero-sum game to within a multiplicative factor is in PSPACE, and that it cannot be in promise-S/sub 2//sup p/ unless the polynomial-time hierarchy collapses. Thus, under a reasonable complexity-theoretic assumption, multiplicative factor approximation of succinct zero-sum games is strictly harder than additive factor approximation.</description><subject>Circuits</subject><subject>Complexity theory</subject><subject>Computational complexity</subject><subject>Computer science</subject><subject>Game theory</subject><subject>Linear programming</subject><subject>Minimax techniques</subject><subject>National electric code</subject><subject>Polynomials</subject><subject>Probability distribution</subject><issn>1093-0159</issn><issn>2575-8403</issn><isbn>0769523641</isbn><isbn>9780769523644</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjDtPwzAURi0eEqF0YmTxD8Dp9dseUcRLqtSlzJVzbUNQ01RxKlF-PUXwLWc55yPklkPNOfhF0zS1ANA1d2ekEtpq5hTIc3IN1ngtpFH8glQnVTLg2l-ReSmfcJrSv11F7lc7On0kikO_36avbjrSIdNyQOx2ONHvNA6sHHr6HvpUbshlDtuS5v-ckbenx3Xzwpar59fmYck6bvXE0LfZ2-CCdllwxIhZZgAXdW4xcC9A2Kw8Rq2Cjy0aY0T2waWYsgIwckbu_n67lNJmP3Z9GI8brpQEb-QP_l9DaQ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Fortnow, L.</creator><creator>Impagliazzo, R.</creator><creator>Kabanets, V.</creator><creator>Umans, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>On the complexity of succinct zero-sum games</title><author>Fortnow, L. ; Impagliazzo, R. ; Kabanets, V. ; Umans, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c9bf97a8a58f21ccdcf3f008d5fbca192027f49cd54a9dbc6662f9a8edef40063</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Circuits</topic><topic>Complexity theory</topic><topic>Computational complexity</topic><topic>Computer science</topic><topic>Game theory</topic><topic>Linear programming</topic><topic>Minimax techniques</topic><topic>National electric code</topic><topic>Polynomials</topic><topic>Probability distribution</topic><toplevel>online_resources</toplevel><creatorcontrib>Fortnow, L.</creatorcontrib><creatorcontrib>Impagliazzo, R.</creatorcontrib><creatorcontrib>Kabanets, V.</creatorcontrib><creatorcontrib>Umans, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fortnow, L.</au><au>Impagliazzo, R.</au><au>Kabanets, V.</au><au>Umans, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On the complexity of succinct zero-sum games</atitle><btitle>20th Annual IEEE Conference on Computational Complexity (CCC'05)</btitle><stitle>CCC</stitle><date>2005</date><risdate>2005</risdate><spage>323</spage><epage>332</epage><pages>323-332</pages><issn>1093-0159</issn><eissn>2575-8403</eissn><isbn>0769523641</isbn><isbn>9780769523644</isbn><abstract>We study the complexity of solving succinct zero-sum games, i.e., the games whose payoff matrix M is given implicitly by a Boolean circuit C such that M(i, j) = C(i, j). We complement the known EXP-hardness of computing the exact value of a succinct zero-sum game by several results on approximating the value. (1) We prove that approximating the value of a succinct zero-sum game to within an additive factor is complete for the class promise-S/sub 2//sup p/, the "promise" version of S/sub 2//sup p/. To the best of our knowledge, it is the first natural problem shown complete for this class. (2) We describe a ZPP/sup NP/ algorithm for constructing approximately optimal strategies, and hence for approximating the value, of a given succinct zero-sum game. As a corollary, we obtain, in a uniform fashion, several complexity-theoretic results, e.g., a ZPP/sup NP/ algorithm for learning circuits for SAT (Bshouty et al., 1996) and a recent result by Cai (2001) that S/sub 2//sup p/ /spl sube/ ZPP/sup NP/. (3) We observe that approximating the value of a succinct zero-sum game to within a multiplicative factor is in PSPACE, and that it cannot be in promise-S/sub 2//sup p/ unless the polynomial-time hierarchy collapses. Thus, under a reasonable complexity-theoretic assumption, multiplicative factor approximation of succinct zero-sum games is strictly harder than additive factor approximation.</abstract><pub>IEEE</pub><doi>10.1109/CCC.2005.18</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1093-0159 |
ispartof | 20th Annual IEEE Conference on Computational Complexity (CCC'05), 2005, p.323-332 |
issn | 1093-0159 2575-8403 |
language | eng |
recordid | cdi_ieee_primary_1443096 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Circuits Complexity theory Computational complexity Computer science Game theory Linear programming Minimax techniques National electric code Polynomials Probability distribution |
title | On the complexity of succinct zero-sum games |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A11%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20the%20complexity%20of%20succinct%20zero-sum%20games&rft.btitle=20th%20Annual%20IEEE%20Conference%20on%20Computational%20Complexity%20(CCC'05)&rft.au=Fortnow,%20L.&rft.date=2005&rft.spage=323&rft.epage=332&rft.pages=323-332&rft.issn=1093-0159&rft.eissn=2575-8403&rft.isbn=0769523641&rft.isbn_list=9780769523644&rft_id=info:doi/10.1109/CCC.2005.18&rft_dat=%3Cieee_6IE%3E1443096%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1443096&rfr_iscdi=true |