Error and convergence in numerical implementations of the conjugate gradient method (EM problems)
The conjugate gradient method has previously been applied in electromagnetics in two ways: to moment method matrices and directly to continuous operator equations. Numerical implementations of these two methods are shown here to be equivalent. It is concluded that the advantage of the conjugate grad...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 1988-12, Vol.36 (12), p.1824-1827 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1827 |
---|---|
container_issue | 12 |
container_start_page | 1824 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 36 |
creator | Ray, S.L. Peterson, A.F. |
description | The conjugate gradient method has previously been applied in electromagnetics in two ways: to moment method matrices and directly to continuous operator equations. Numerical implementations of these two methods are shown here to be equivalent. It is concluded that the advantage of the conjugate gradient method is therefore its potential computational efficiency as a solution procedure, not its ability to achieve a more exact solution than the moment method.< > |
doi_str_mv | 10.1109/8.14405 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_14405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>14405</ieee_id><sourcerecordid>25015661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-31f890e9e1c317405f99fc7397f9d3abde051bcbcceccc73578877096ccc1f343</originalsourceid><addsrcrecordid>eNpFkMtLAzEQxoMoWKt49paD-DhszewzOUqpD6h4UfC2pNlJm7Kb1GRX8L83bUVPwzfzm2-Yj5BzYBMAJu74BPKcFQdkBEXBkzRN4ZCMGAOeiLT8OCYnIayjzHmej4icee88lbahytkv9Eu0Cqmx1A4deqNkS023abFD28veOBuo07Rf4ZZfD0vZI1162Zg4px32K9fQm9kL3Xi3iFvh9pQcadkGPPutY_L-MHubPiXz18fn6f08URmDPslAc8FQIKgMqviAFkKrKhOVFk0mFw2yAhZqoRQqFftFxXlVMVFGBTrLszG52vvGy58Dhr7uTFDYttKiG0KdFgyKsoQIXu9B5V0IHnW98aaT_rsGVm8jrHm9izCSl7-WMsQgtJdWmfCHl5yzgpcRu9hjBhH_zXYWP6RueQc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25015661</pqid></control><display><type>article</type><title>Error and convergence in numerical implementations of the conjugate gradient method (EM problems)</title><source>IEEE Electronic Library (IEL)</source><creator>Ray, S.L. ; Peterson, A.F.</creator><creatorcontrib>Ray, S.L. ; Peterson, A.F.</creatorcontrib><description>The conjugate gradient method has previously been applied in electromagnetics in two ways: to moment method matrices and directly to continuous operator equations. Numerical implementations of these two methods are shown here to be equivalent. It is concluded that the advantage of the conjugate gradient method is therefore its potential computational efficiency as a solution procedure, not its ability to achieve a more exact solution than the moment method.< ></description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/8.14405</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Character generation ; Convergence of numerical methods ; Equations ; Exact sciences and technology ; Finite wordlength effects ; Gradient methods ; Iterative algorithms ; Magnetics ; Matrix decomposition ; Moment methods ; Radiocommunications ; Radiowave propagation ; Telecommunications ; Telecommunications and information theory ; User-generated content</subject><ispartof>IEEE transactions on antennas and propagation, 1988-12, Vol.36 (12), p.1824-1827</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-31f890e9e1c317405f99fc7397f9d3abde051bcbcceccc73578877096ccc1f343</citedby><cites>FETCH-LOGICAL-c301t-31f890e9e1c317405f99fc7397f9d3abde051bcbcceccc73578877096ccc1f343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/14405$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/14405$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6880586$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ray, S.L.</creatorcontrib><creatorcontrib>Peterson, A.F.</creatorcontrib><title>Error and convergence in numerical implementations of the conjugate gradient method (EM problems)</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>The conjugate gradient method has previously been applied in electromagnetics in two ways: to moment method matrices and directly to continuous operator equations. Numerical implementations of these two methods are shown here to be equivalent. It is concluded that the advantage of the conjugate gradient method is therefore its potential computational efficiency as a solution procedure, not its ability to achieve a more exact solution than the moment method.< ></description><subject>Applied sciences</subject><subject>Character generation</subject><subject>Convergence of numerical methods</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Finite wordlength effects</subject><subject>Gradient methods</subject><subject>Iterative algorithms</subject><subject>Magnetics</subject><subject>Matrix decomposition</subject><subject>Moment methods</subject><subject>Radiocommunications</subject><subject>Radiowave propagation</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>User-generated content</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNpFkMtLAzEQxoMoWKt49paD-DhszewzOUqpD6h4UfC2pNlJm7Kb1GRX8L83bUVPwzfzm2-Yj5BzYBMAJu74BPKcFQdkBEXBkzRN4ZCMGAOeiLT8OCYnIayjzHmej4icee88lbahytkv9Eu0Cqmx1A4deqNkS023abFD28veOBuo07Rf4ZZfD0vZI1162Zg4px32K9fQm9kL3Xi3iFvh9pQcadkGPPutY_L-MHubPiXz18fn6f08URmDPslAc8FQIKgMqviAFkKrKhOVFk0mFw2yAhZqoRQqFftFxXlVMVFGBTrLszG52vvGy58Dhr7uTFDYttKiG0KdFgyKsoQIXu9B5V0IHnW98aaT_rsGVm8jrHm9izCSl7-WMsQgtJdWmfCHl5yzgpcRu9hjBhH_zXYWP6RueQc</recordid><startdate>19881201</startdate><enddate>19881201</enddate><creator>Ray, S.L.</creator><creator>Peterson, A.F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19881201</creationdate><title>Error and convergence in numerical implementations of the conjugate gradient method (EM problems)</title><author>Ray, S.L. ; Peterson, A.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-31f890e9e1c317405f99fc7397f9d3abde051bcbcceccc73578877096ccc1f343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Applied sciences</topic><topic>Character generation</topic><topic>Convergence of numerical methods</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Finite wordlength effects</topic><topic>Gradient methods</topic><topic>Iterative algorithms</topic><topic>Magnetics</topic><topic>Matrix decomposition</topic><topic>Moment methods</topic><topic>Radiocommunications</topic><topic>Radiowave propagation</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>User-generated content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ray, S.L.</creatorcontrib><creatorcontrib>Peterson, A.F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ray, S.L.</au><au>Peterson, A.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error and convergence in numerical implementations of the conjugate gradient method (EM problems)</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>1988-12-01</date><risdate>1988</risdate><volume>36</volume><issue>12</issue><spage>1824</spage><epage>1827</epage><pages>1824-1827</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>The conjugate gradient method has previously been applied in electromagnetics in two ways: to moment method matrices and directly to continuous operator equations. Numerical implementations of these two methods are shown here to be equivalent. It is concluded that the advantage of the conjugate gradient method is therefore its potential computational efficiency as a solution procedure, not its ability to achieve a more exact solution than the moment method.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/8.14405</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 1988-12, Vol.36 (12), p.1824-1827 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_ieee_primary_14405 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Character generation Convergence of numerical methods Equations Exact sciences and technology Finite wordlength effects Gradient methods Iterative algorithms Magnetics Matrix decomposition Moment methods Radiocommunications Radiowave propagation Telecommunications Telecommunications and information theory User-generated content |
title | Error and convergence in numerical implementations of the conjugate gradient method (EM problems) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A58%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20and%20convergence%20in%20numerical%20implementations%20of%20the%20conjugate%20gradient%20method%20(EM%20problems)&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Ray,%20S.L.&rft.date=1988-12-01&rft.volume=36&rft.issue=12&rft.spage=1824&rft.epage=1827&rft.pages=1824-1827&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/8.14405&rft_dat=%3Cproquest_RIE%3E25015661%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25015661&rft_id=info:pmid/&rft_ieee_id=14405&rfr_iscdi=true |