Error and convergence in numerical implementations of the conjugate gradient method (EM problems)

The conjugate gradient method has previously been applied in electromagnetics in two ways: to moment method matrices and directly to continuous operator equations. Numerical implementations of these two methods are shown here to be equivalent. It is concluded that the advantage of the conjugate grad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 1988-12, Vol.36 (12), p.1824-1827
Hauptverfasser: Ray, S.L., Peterson, A.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1827
container_issue 12
container_start_page 1824
container_title IEEE transactions on antennas and propagation
container_volume 36
creator Ray, S.L.
Peterson, A.F.
description The conjugate gradient method has previously been applied in electromagnetics in two ways: to moment method matrices and directly to continuous operator equations. Numerical implementations of these two methods are shown here to be equivalent. It is concluded that the advantage of the conjugate gradient method is therefore its potential computational efficiency as a solution procedure, not its ability to achieve a more exact solution than the moment method.< >
doi_str_mv 10.1109/8.14405
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_14405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>14405</ieee_id><sourcerecordid>25015661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-31f890e9e1c317405f99fc7397f9d3abde051bcbcceccc73578877096ccc1f343</originalsourceid><addsrcrecordid>eNpFkMtLAzEQxoMoWKt49paD-DhszewzOUqpD6h4UfC2pNlJm7Kb1GRX8L83bUVPwzfzm2-Yj5BzYBMAJu74BPKcFQdkBEXBkzRN4ZCMGAOeiLT8OCYnIayjzHmej4icee88lbahytkv9Eu0Cqmx1A4deqNkS023abFD28veOBuo07Rf4ZZfD0vZI1162Zg4px32K9fQm9kL3Xi3iFvh9pQcadkGPPutY_L-MHubPiXz18fn6f08URmDPslAc8FQIKgMqviAFkKrKhOVFk0mFw2yAhZqoRQqFftFxXlVMVFGBTrLszG52vvGy58Dhr7uTFDYttKiG0KdFgyKsoQIXu9B5V0IHnW98aaT_rsGVm8jrHm9izCSl7-WMsQgtJdWmfCHl5yzgpcRu9hjBhH_zXYWP6RueQc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25015661</pqid></control><display><type>article</type><title>Error and convergence in numerical implementations of the conjugate gradient method (EM problems)</title><source>IEEE Electronic Library (IEL)</source><creator>Ray, S.L. ; Peterson, A.F.</creator><creatorcontrib>Ray, S.L. ; Peterson, A.F.</creatorcontrib><description>The conjugate gradient method has previously been applied in electromagnetics in two ways: to moment method matrices and directly to continuous operator equations. Numerical implementations of these two methods are shown here to be equivalent. It is concluded that the advantage of the conjugate gradient method is therefore its potential computational efficiency as a solution procedure, not its ability to achieve a more exact solution than the moment method.&lt; &gt;</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/8.14405</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Character generation ; Convergence of numerical methods ; Equations ; Exact sciences and technology ; Finite wordlength effects ; Gradient methods ; Iterative algorithms ; Magnetics ; Matrix decomposition ; Moment methods ; Radiocommunications ; Radiowave propagation ; Telecommunications ; Telecommunications and information theory ; User-generated content</subject><ispartof>IEEE transactions on antennas and propagation, 1988-12, Vol.36 (12), p.1824-1827</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-31f890e9e1c317405f99fc7397f9d3abde051bcbcceccc73578877096ccc1f343</citedby><cites>FETCH-LOGICAL-c301t-31f890e9e1c317405f99fc7397f9d3abde051bcbcceccc73578877096ccc1f343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/14405$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/14405$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6880586$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ray, S.L.</creatorcontrib><creatorcontrib>Peterson, A.F.</creatorcontrib><title>Error and convergence in numerical implementations of the conjugate gradient method (EM problems)</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>The conjugate gradient method has previously been applied in electromagnetics in two ways: to moment method matrices and directly to continuous operator equations. Numerical implementations of these two methods are shown here to be equivalent. It is concluded that the advantage of the conjugate gradient method is therefore its potential computational efficiency as a solution procedure, not its ability to achieve a more exact solution than the moment method.&lt; &gt;</description><subject>Applied sciences</subject><subject>Character generation</subject><subject>Convergence of numerical methods</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Finite wordlength effects</subject><subject>Gradient methods</subject><subject>Iterative algorithms</subject><subject>Magnetics</subject><subject>Matrix decomposition</subject><subject>Moment methods</subject><subject>Radiocommunications</subject><subject>Radiowave propagation</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>User-generated content</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNpFkMtLAzEQxoMoWKt49paD-DhszewzOUqpD6h4UfC2pNlJm7Kb1GRX8L83bUVPwzfzm2-Yj5BzYBMAJu74BPKcFQdkBEXBkzRN4ZCMGAOeiLT8OCYnIayjzHmej4icee88lbahytkv9Eu0Cqmx1A4deqNkS023abFD28veOBuo07Rf4ZZfD0vZI1162Zg4px32K9fQm9kL3Xi3iFvh9pQcadkGPPutY_L-MHubPiXz18fn6f08URmDPslAc8FQIKgMqviAFkKrKhOVFk0mFw2yAhZqoRQqFftFxXlVMVFGBTrLszG52vvGy58Dhr7uTFDYttKiG0KdFgyKsoQIXu9B5V0IHnW98aaT_rsGVm8jrHm9izCSl7-WMsQgtJdWmfCHl5yzgpcRu9hjBhH_zXYWP6RueQc</recordid><startdate>19881201</startdate><enddate>19881201</enddate><creator>Ray, S.L.</creator><creator>Peterson, A.F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19881201</creationdate><title>Error and convergence in numerical implementations of the conjugate gradient method (EM problems)</title><author>Ray, S.L. ; Peterson, A.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-31f890e9e1c317405f99fc7397f9d3abde051bcbcceccc73578877096ccc1f343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Applied sciences</topic><topic>Character generation</topic><topic>Convergence of numerical methods</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Finite wordlength effects</topic><topic>Gradient methods</topic><topic>Iterative algorithms</topic><topic>Magnetics</topic><topic>Matrix decomposition</topic><topic>Moment methods</topic><topic>Radiocommunications</topic><topic>Radiowave propagation</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>User-generated content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ray, S.L.</creatorcontrib><creatorcontrib>Peterson, A.F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ray, S.L.</au><au>Peterson, A.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error and convergence in numerical implementations of the conjugate gradient method (EM problems)</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>1988-12-01</date><risdate>1988</risdate><volume>36</volume><issue>12</issue><spage>1824</spage><epage>1827</epage><pages>1824-1827</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>The conjugate gradient method has previously been applied in electromagnetics in two ways: to moment method matrices and directly to continuous operator equations. Numerical implementations of these two methods are shown here to be equivalent. It is concluded that the advantage of the conjugate gradient method is therefore its potential computational efficiency as a solution procedure, not its ability to achieve a more exact solution than the moment method.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/8.14405</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 1988-12, Vol.36 (12), p.1824-1827
issn 0018-926X
1558-2221
language eng
recordid cdi_ieee_primary_14405
source IEEE Electronic Library (IEL)
subjects Applied sciences
Character generation
Convergence of numerical methods
Equations
Exact sciences and technology
Finite wordlength effects
Gradient methods
Iterative algorithms
Magnetics
Matrix decomposition
Moment methods
Radiocommunications
Radiowave propagation
Telecommunications
Telecommunications and information theory
User-generated content
title Error and convergence in numerical implementations of the conjugate gradient method (EM problems)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A58%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20and%20convergence%20in%20numerical%20implementations%20of%20the%20conjugate%20gradient%20method%20(EM%20problems)&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Ray,%20S.L.&rft.date=1988-12-01&rft.volume=36&rft.issue=12&rft.spage=1824&rft.epage=1827&rft.pages=1824-1827&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/8.14405&rft_dat=%3Cproquest_RIE%3E25015661%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25015661&rft_id=info:pmid/&rft_ieee_id=14405&rfr_iscdi=true