Solving warehouse location problem by Lagrange programming neural network

The LPPH-CSP is a neural network for solving the constraint satisfaction problem (CSP), which is a combinatorial problem to find a solution which satisfies all given constraints. The trajectory of the LPPH-CSP is not trapped by any point which is not the solution of the CSP. Though the already propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nakano, T., Nagamatu, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1753 Vol. 2
container_issue
container_start_page 1749
container_title
container_volume 2
creator Nakano, T.
Nagamatu, M.
description The LPPH-CSP is a neural network for solving the constraint satisfaction problem (CSP), which is a combinatorial problem to find a solution which satisfies all given constraints. The trajectory of the LPPH-CSP is not trapped by any point which is not the solution of the CSP. Though the already proposed other methods for solving the CSP must update all variables sequentially, the LPPH-CSP can update all variables simultaneously. We think this is an advantage of the LPPH-CSP for VLSI implementation. In this paper, we add new types of constrains to the CSP, and extend the LPPH-CSP for these types of constraints. We apply this new LPPH-CSP for solving the warehouse location problem (WLP), which is a kind of the CSP with an objective function.
doi_str_mv 10.1109/IECON.2004.1431846
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_1431846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1431846</ieee_id><sourcerecordid>18025163</sourcerecordid><originalsourceid>FETCH-LOGICAL-i205t-7bda8b755ff338ce57159bfc59db941913c24392545758059a286720dd11a4523</originalsourceid><addsrcrecordid>eNpFUMtKxEAQHBBBWfMDesnFY2LPozMzRwmrBoJ7UM_LJJnEaF7MZF32780Swaagmu6qomlCbinElIJ-yLbp7jVmACKmglMlkgsSaKlgAVeSA1yRwPsvWIprBKWvSfY2dj_t0IRH4-znePA27MbSzO04hJMbi872YXEKc9M4MzT2PFu6vj9bBntwpltoPo7u-4Zc1qbzNvjjDfl42r6nL1G-e87SxzxqGeAcyaIyqpCIdc25Ki1KirqoS9RVoQXVlJdMcM1QoEQFqA1TiWRQVZQagYxvyP2aOxlfmq5e7ipbv59c2xt32lMFDGnCF93dqmuttf_r9TH8Fzb7WEs</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Solving warehouse location problem by Lagrange programming neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nakano, T. ; Nagamatu, M.</creator><creatorcontrib>Nakano, T. ; Nagamatu, M.</creatorcontrib><description>The LPPH-CSP is a neural network for solving the constraint satisfaction problem (CSP), which is a combinatorial problem to find a solution which satisfies all given constraints. The trajectory of the LPPH-CSP is not trapped by any point which is not the solution of the CSP. Though the already proposed other methods for solving the CSP must update all variables sequentially, the LPPH-CSP can update all variables simultaneously. We think this is an advantage of the LPPH-CSP for VLSI implementation. In this paper, we add new types of constrains to the CSP, and extend the LPPH-CSP for these types of constraints. We apply this new LPPH-CSP for solving the warehouse location problem (WLP), which is a kind of the CSP with an objective function.</description><identifier>ISBN: 9780780387300</identifier><identifier>ISBN: 0780387309</identifier><identifier>DOI: 10.1109/IECON.2004.1431846</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Constraint theory ; Electronic mail ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Iterative algorithms ; Lagrangian functions ; Neural networks ; Operational research and scientific management ; Operational research. Management science ; Search methods ; Systems engineering and theory ; Very large scale integration</subject><ispartof>30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON 2004, 2004, Vol.2, p.1749-1753 Vol. 2</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1431846$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1431846$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18025163$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakano, T.</creatorcontrib><creatorcontrib>Nagamatu, M.</creatorcontrib><title>Solving warehouse location problem by Lagrange programming neural network</title><title>30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON 2004</title><addtitle>IECON</addtitle><description>The LPPH-CSP is a neural network for solving the constraint satisfaction problem (CSP), which is a combinatorial problem to find a solution which satisfies all given constraints. The trajectory of the LPPH-CSP is not trapped by any point which is not the solution of the CSP. Though the already proposed other methods for solving the CSP must update all variables sequentially, the LPPH-CSP can update all variables simultaneously. We think this is an advantage of the LPPH-CSP for VLSI implementation. In this paper, we add new types of constrains to the CSP, and extend the LPPH-CSP for these types of constraints. We apply this new LPPH-CSP for solving the warehouse location problem (WLP), which is a kind of the CSP with an objective function.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Constraint theory</subject><subject>Electronic mail</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Iterative algorithms</subject><subject>Lagrangian functions</subject><subject>Neural networks</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Search methods</subject><subject>Systems engineering and theory</subject><subject>Very large scale integration</subject><isbn>9780780387300</isbn><isbn>0780387309</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUMtKxEAQHBBBWfMDesnFY2LPozMzRwmrBoJ7UM_LJJnEaF7MZF32780Swaagmu6qomlCbinElIJ-yLbp7jVmACKmglMlkgsSaKlgAVeSA1yRwPsvWIprBKWvSfY2dj_t0IRH4-znePA27MbSzO04hJMbi872YXEKc9M4MzT2PFu6vj9bBntwpltoPo7u-4Zc1qbzNvjjDfl42r6nL1G-e87SxzxqGeAcyaIyqpCIdc25Ki1KirqoS9RVoQXVlJdMcM1QoEQFqA1TiWRQVZQagYxvyP2aOxlfmq5e7ipbv59c2xt32lMFDGnCF93dqmuttf_r9TH8Fzb7WEs</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Nakano, T.</creator><creator>Nagamatu, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Solving warehouse location problem by Lagrange programming neural network</title><author>Nakano, T. ; Nagamatu, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i205t-7bda8b755ff338ce57159bfc59db941913c24392545758059a286720dd11a4523</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Constraint theory</topic><topic>Electronic mail</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Iterative algorithms</topic><topic>Lagrangian functions</topic><topic>Neural networks</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Search methods</topic><topic>Systems engineering and theory</topic><topic>Very large scale integration</topic><toplevel>online_resources</toplevel><creatorcontrib>Nakano, T.</creatorcontrib><creatorcontrib>Nagamatu, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nakano, T.</au><au>Nagamatu, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Solving warehouse location problem by Lagrange programming neural network</atitle><btitle>30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON 2004</btitle><stitle>IECON</stitle><date>2004</date><risdate>2004</risdate><volume>2</volume><spage>1749</spage><epage>1753 Vol. 2</epage><pages>1749-1753 Vol. 2</pages><isbn>9780780387300</isbn><isbn>0780387309</isbn><abstract>The LPPH-CSP is a neural network for solving the constraint satisfaction problem (CSP), which is a combinatorial problem to find a solution which satisfies all given constraints. The trajectory of the LPPH-CSP is not trapped by any point which is not the solution of the CSP. Though the already proposed other methods for solving the CSP must update all variables sequentially, the LPPH-CSP can update all variables simultaneously. We think this is an advantage of the LPPH-CSP for VLSI implementation. In this paper, we add new types of constrains to the CSP, and extend the LPPH-CSP for these types of constraints. We apply this new LPPH-CSP for solving the warehouse location problem (WLP), which is a kind of the CSP with an objective function.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/IECON.2004.1431846</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780387300
ispartof 30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON 2004, 2004, Vol.2, p.1749-1753 Vol. 2
issn
language eng
recordid cdi_ieee_primary_1431846
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Connectionism. Neural networks
Constraint theory
Electronic mail
Exact sciences and technology
Flows in networks. Combinatorial problems
Iterative algorithms
Lagrangian functions
Neural networks
Operational research and scientific management
Operational research. Management science
Search methods
Systems engineering and theory
Very large scale integration
title Solving warehouse location problem by Lagrange programming neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Solving%20warehouse%20location%20problem%20by%20Lagrange%20programming%20neural%20network&rft.btitle=30th%20Annual%20Conference%20of%20IEEE%20Industrial%20Electronics%20Society,%202004.%20IECON%202004&rft.au=Nakano,%20T.&rft.date=2004&rft.volume=2&rft.spage=1749&rft.epage=1753%20Vol.%202&rft.pages=1749-1753%20Vol.%202&rft.isbn=9780780387300&rft.isbn_list=0780387309&rft_id=info:doi/10.1109/IECON.2004.1431846&rft_dat=%3Cpascalfrancis_6IE%3E18025163%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1431846&rfr_iscdi=true