Solving warehouse location problem by Lagrange programming neural network
The LPPH-CSP is a neural network for solving the constraint satisfaction problem (CSP), which is a combinatorial problem to find a solution which satisfies all given constraints. The trajectory of the LPPH-CSP is not trapped by any point which is not the solution of the CSP. Though the already propo...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1753 Vol. 2 |
---|---|
container_issue | |
container_start_page | 1749 |
container_title | |
container_volume | 2 |
creator | Nakano, T. Nagamatu, M. |
description | The LPPH-CSP is a neural network for solving the constraint satisfaction problem (CSP), which is a combinatorial problem to find a solution which satisfies all given constraints. The trajectory of the LPPH-CSP is not trapped by any point which is not the solution of the CSP. Though the already proposed other methods for solving the CSP must update all variables sequentially, the LPPH-CSP can update all variables simultaneously. We think this is an advantage of the LPPH-CSP for VLSI implementation. In this paper, we add new types of constrains to the CSP, and extend the LPPH-CSP for these types of constraints. We apply this new LPPH-CSP for solving the warehouse location problem (WLP), which is a kind of the CSP with an objective function. |
doi_str_mv | 10.1109/IECON.2004.1431846 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_1431846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1431846</ieee_id><sourcerecordid>18025163</sourcerecordid><originalsourceid>FETCH-LOGICAL-i205t-7bda8b755ff338ce57159bfc59db941913c24392545758059a286720dd11a4523</originalsourceid><addsrcrecordid>eNpFUMtKxEAQHBBBWfMDesnFY2LPozMzRwmrBoJ7UM_LJJnEaF7MZF32780Swaagmu6qomlCbinElIJ-yLbp7jVmACKmglMlkgsSaKlgAVeSA1yRwPsvWIprBKWvSfY2dj_t0IRH4-znePA27MbSzO04hJMbi872YXEKc9M4MzT2PFu6vj9bBntwpltoPo7u-4Zc1qbzNvjjDfl42r6nL1G-e87SxzxqGeAcyaIyqpCIdc25Ki1KirqoS9RVoQXVlJdMcM1QoEQFqA1TiWRQVZQagYxvyP2aOxlfmq5e7ipbv59c2xt32lMFDGnCF93dqmuttf_r9TH8Fzb7WEs</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Solving warehouse location problem by Lagrange programming neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nakano, T. ; Nagamatu, M.</creator><creatorcontrib>Nakano, T. ; Nagamatu, M.</creatorcontrib><description>The LPPH-CSP is a neural network for solving the constraint satisfaction problem (CSP), which is a combinatorial problem to find a solution which satisfies all given constraints. The trajectory of the LPPH-CSP is not trapped by any point which is not the solution of the CSP. Though the already proposed other methods for solving the CSP must update all variables sequentially, the LPPH-CSP can update all variables simultaneously. We think this is an advantage of the LPPH-CSP for VLSI implementation. In this paper, we add new types of constrains to the CSP, and extend the LPPH-CSP for these types of constraints. We apply this new LPPH-CSP for solving the warehouse location problem (WLP), which is a kind of the CSP with an objective function.</description><identifier>ISBN: 9780780387300</identifier><identifier>ISBN: 0780387309</identifier><identifier>DOI: 10.1109/IECON.2004.1431846</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Constraint theory ; Electronic mail ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Iterative algorithms ; Lagrangian functions ; Neural networks ; Operational research and scientific management ; Operational research. Management science ; Search methods ; Systems engineering and theory ; Very large scale integration</subject><ispartof>30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON 2004, 2004, Vol.2, p.1749-1753 Vol. 2</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1431846$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1431846$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18025163$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakano, T.</creatorcontrib><creatorcontrib>Nagamatu, M.</creatorcontrib><title>Solving warehouse location problem by Lagrange programming neural network</title><title>30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON 2004</title><addtitle>IECON</addtitle><description>The LPPH-CSP is a neural network for solving the constraint satisfaction problem (CSP), which is a combinatorial problem to find a solution which satisfies all given constraints. The trajectory of the LPPH-CSP is not trapped by any point which is not the solution of the CSP. Though the already proposed other methods for solving the CSP must update all variables sequentially, the LPPH-CSP can update all variables simultaneously. We think this is an advantage of the LPPH-CSP for VLSI implementation. In this paper, we add new types of constrains to the CSP, and extend the LPPH-CSP for these types of constraints. We apply this new LPPH-CSP for solving the warehouse location problem (WLP), which is a kind of the CSP with an objective function.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Constraint theory</subject><subject>Electronic mail</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Iterative algorithms</subject><subject>Lagrangian functions</subject><subject>Neural networks</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Search methods</subject><subject>Systems engineering and theory</subject><subject>Very large scale integration</subject><isbn>9780780387300</isbn><isbn>0780387309</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUMtKxEAQHBBBWfMDesnFY2LPozMzRwmrBoJ7UM_LJJnEaF7MZF32780Swaagmu6qomlCbinElIJ-yLbp7jVmACKmglMlkgsSaKlgAVeSA1yRwPsvWIprBKWvSfY2dj_t0IRH4-znePA27MbSzO04hJMbi872YXEKc9M4MzT2PFu6vj9bBntwpltoPo7u-4Zc1qbzNvjjDfl42r6nL1G-e87SxzxqGeAcyaIyqpCIdc25Ki1KirqoS9RVoQXVlJdMcM1QoEQFqA1TiWRQVZQagYxvyP2aOxlfmq5e7ipbv59c2xt32lMFDGnCF93dqmuttf_r9TH8Fzb7WEs</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Nakano, T.</creator><creator>Nagamatu, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Solving warehouse location problem by Lagrange programming neural network</title><author>Nakano, T. ; Nagamatu, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i205t-7bda8b755ff338ce57159bfc59db941913c24392545758059a286720dd11a4523</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Constraint theory</topic><topic>Electronic mail</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Iterative algorithms</topic><topic>Lagrangian functions</topic><topic>Neural networks</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Search methods</topic><topic>Systems engineering and theory</topic><topic>Very large scale integration</topic><toplevel>online_resources</toplevel><creatorcontrib>Nakano, T.</creatorcontrib><creatorcontrib>Nagamatu, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nakano, T.</au><au>Nagamatu, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Solving warehouse location problem by Lagrange programming neural network</atitle><btitle>30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON 2004</btitle><stitle>IECON</stitle><date>2004</date><risdate>2004</risdate><volume>2</volume><spage>1749</spage><epage>1753 Vol. 2</epage><pages>1749-1753 Vol. 2</pages><isbn>9780780387300</isbn><isbn>0780387309</isbn><abstract>The LPPH-CSP is a neural network for solving the constraint satisfaction problem (CSP), which is a combinatorial problem to find a solution which satisfies all given constraints. The trajectory of the LPPH-CSP is not trapped by any point which is not the solution of the CSP. Though the already proposed other methods for solving the CSP must update all variables sequentially, the LPPH-CSP can update all variables simultaneously. We think this is an advantage of the LPPH-CSP for VLSI implementation. In this paper, we add new types of constrains to the CSP, and extend the LPPH-CSP for these types of constraints. We apply this new LPPH-CSP for solving the warehouse location problem (WLP), which is a kind of the CSP with an objective function.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/IECON.2004.1431846</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780387300 |
ispartof | 30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON 2004, 2004, Vol.2, p.1749-1753 Vol. 2 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1431846 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Connectionism. Neural networks Constraint theory Electronic mail Exact sciences and technology Flows in networks. Combinatorial problems Iterative algorithms Lagrangian functions Neural networks Operational research and scientific management Operational research. Management science Search methods Systems engineering and theory Very large scale integration |
title | Solving warehouse location problem by Lagrange programming neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Solving%20warehouse%20location%20problem%20by%20Lagrange%20programming%20neural%20network&rft.btitle=30th%20Annual%20Conference%20of%20IEEE%20Industrial%20Electronics%20Society,%202004.%20IECON%202004&rft.au=Nakano,%20T.&rft.date=2004&rft.volume=2&rft.spage=1749&rft.epage=1753%20Vol.%202&rft.pages=1749-1753%20Vol.%202&rft.isbn=9780780387300&rft.isbn_list=0780387309&rft_id=info:doi/10.1109/IECON.2004.1431846&rft_dat=%3Cpascalfrancis_6IE%3E18025163%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1431846&rfr_iscdi=true |