Classifying the multiplicity of the EEG source models using sphere-shaped support vector Machines

Support vector machines (SVMs) are learning algorithms derived from statistical learning theory, and originally designed to solve binary classification problems. How to effectively extend SVMs for multiclass classification problems is still an ongoing research issue. In this paper, a sphere-shaped S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2005-05, Vol.41 (5), p.1912-1915
Hauptverfasser: Qing Wu, Qing Wu, Xueqin Shen, Xueqin Shen, Ying Li, Ying Li, Guizhi Xu, Guizhi Xu, Weili Yan, Weili Yan, Guoya Dong, Guoya Dong, Qingxin Yang, Qingxin Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1915
container_issue 5
container_start_page 1912
container_title IEEE transactions on magnetics
container_volume 41
creator Qing Wu, Qing Wu
Xueqin Shen, Xueqin Shen
Ying Li, Ying Li
Guizhi Xu, Guizhi Xu
Weili Yan, Weili Yan
Guoya Dong, Guoya Dong
Qingxin Yang, Qingxin Yang
description Support vector machines (SVMs) are learning algorithms derived from statistical learning theory, and originally designed to solve binary classification problems. How to effectively extend SVMs for multiclass classification problems is still an ongoing research issue. In this paper, a sphere-shaped SVM for multiclass problems is presented. Compared with the classical plane-shaped SVMs, the number of convex quadratic programming problems and the number of variables in each programming are smaller. Such SVM classifier is applied to the electroencephalogram (EEG) source localization problem, and the multiplicity of source models is determined according to the potentials recorded on the scalp. Experimental results indicate that the sphere-shaped SVM based classifier is an effective and promising approach for this task.
doi_str_mv 10.1109/TMAG.2005.846231
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1430997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1430997</ieee_id><sourcerecordid>27975952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-e903b3129880defccd223aa8c4142dca1572608b1d916f0bb95349dc647f4d253</originalsourceid><addsrcrecordid>eNp90U2LFDEQBuAgCo6rd8FLI6inHiufnRyXYZwVdvGynkMmXe1k6eluU93C_HszzsKChz2FpJ4qqLyMveew5hzc1_u7691aAOi1VUZI_oKtuFO8BjDuJVsBcFs7ZdRr9obooVyV5rBiYdMHotSd0vCrmg9YHZd-TlOfYppP1dj9e9tudxWNS46lPLbYU7XQ2dN0wIw1HcKEbUXLNI15rv5gnMdc3YV4SAPSW_aqCz3hu8fziv38tr3f3NS3P3bfN9e3dZRWzjU6kHvJhbMWWuxibIWQIdiouBJtDFw3woDd89Zx08F-77RUro1GNZ1qhZZX7Mtl7pTH3wvS7I-JIvZ9GHBcyFtnhNK2cUV-flaKxjXaaVHgx__gQ_mFoWzhrWmUdkKaguCCYh6JMnZ-yukY8slz8Odo_Dkaf47GX6IpLZ8e5waKoe9yGGKipz5jFUiA4j5cXELEp7KS4Fwj_wL5Ypbk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867459236</pqid></control><display><type>article</type><title>Classifying the multiplicity of the EEG source models using sphere-shaped support vector Machines</title><source>IEEE Electronic Library (IEL)</source><creator>Qing Wu, Qing Wu ; Xueqin Shen, Xueqin Shen ; Ying Li, Ying Li ; Guizhi Xu, Guizhi Xu ; Weili Yan, Weili Yan ; Guoya Dong, Guoya Dong ; Qingxin Yang, Qingxin Yang</creator><creatorcontrib>Qing Wu, Qing Wu ; Xueqin Shen, Xueqin Shen ; Ying Li, Ying Li ; Guizhi Xu, Guizhi Xu ; Weili Yan, Weili Yan ; Guoya Dong, Guoya Dong ; Qingxin Yang, Qingxin Yang</creatorcontrib><description>Support vector machines (SVMs) are learning algorithms derived from statistical learning theory, and originally designed to solve binary classification problems. How to effectively extend SVMs for multiclass classification problems is still an ongoing research issue. In this paper, a sphere-shaped SVM for multiclass problems is presented. Compared with the classical plane-shaped SVMs, the number of convex quadratic programming problems and the number of variables in each programming are smaller. Such SVM classifier is applied to the electroencephalogram (EEG) source localization problem, and the multiplicity of source models is determined according to the potentials recorded on the scalp. Experimental results indicate that the sphere-shaped SVM based classifier is an effective and promising approach for this task.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2005.846231</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Brain modeling ; Computer science ; Cross-disciplinary physics: materials science; rheology ; EEG source model ; Electroencephalography ; Electromagnetic fields ; Electromagnetic modeling ; Exact sciences and technology ; Magnetism ; Materials science ; multiclass classification ; Other topics in materials science ; Physics ; Predictive models ; Quadratic programming ; Scalp ; sphere classifier ; support vector machine ; Support vector machine classification ; Support vector machines</subject><ispartof>IEEE transactions on magnetics, 2005-05, Vol.41 (5), p.1912-1915</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-e903b3129880defccd223aa8c4142dca1572608b1d916f0bb95349dc647f4d253</citedby><cites>FETCH-LOGICAL-c383t-e903b3129880defccd223aa8c4142dca1572608b1d916f0bb95349dc647f4d253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1430997$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1430997$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16840300$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Qing Wu, Qing Wu</creatorcontrib><creatorcontrib>Xueqin Shen, Xueqin Shen</creatorcontrib><creatorcontrib>Ying Li, Ying Li</creatorcontrib><creatorcontrib>Guizhi Xu, Guizhi Xu</creatorcontrib><creatorcontrib>Weili Yan, Weili Yan</creatorcontrib><creatorcontrib>Guoya Dong, Guoya Dong</creatorcontrib><creatorcontrib>Qingxin Yang, Qingxin Yang</creatorcontrib><title>Classifying the multiplicity of the EEG source models using sphere-shaped support vector Machines</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Support vector machines (SVMs) are learning algorithms derived from statistical learning theory, and originally designed to solve binary classification problems. How to effectively extend SVMs for multiclass classification problems is still an ongoing research issue. In this paper, a sphere-shaped SVM for multiclass problems is presented. Compared with the classical plane-shaped SVMs, the number of convex quadratic programming problems and the number of variables in each programming are smaller. Such SVM classifier is applied to the electroencephalogram (EEG) source localization problem, and the multiplicity of source models is determined according to the potentials recorded on the scalp. Experimental results indicate that the sphere-shaped SVM based classifier is an effective and promising approach for this task.</description><subject>Brain modeling</subject><subject>Computer science</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>EEG source model</subject><subject>Electroencephalography</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic modeling</subject><subject>Exact sciences and technology</subject><subject>Magnetism</subject><subject>Materials science</subject><subject>multiclass classification</subject><subject>Other topics in materials science</subject><subject>Physics</subject><subject>Predictive models</subject><subject>Quadratic programming</subject><subject>Scalp</subject><subject>sphere classifier</subject><subject>support vector machine</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90U2LFDEQBuAgCo6rd8FLI6inHiufnRyXYZwVdvGynkMmXe1k6eluU93C_HszzsKChz2FpJ4qqLyMveew5hzc1_u7691aAOi1VUZI_oKtuFO8BjDuJVsBcFs7ZdRr9obooVyV5rBiYdMHotSd0vCrmg9YHZd-TlOfYppP1dj9e9tudxWNS46lPLbYU7XQ2dN0wIw1HcKEbUXLNI15rv5gnMdc3YV4SAPSW_aqCz3hu8fziv38tr3f3NS3P3bfN9e3dZRWzjU6kHvJhbMWWuxibIWQIdiouBJtDFw3woDd89Zx08F-77RUro1GNZ1qhZZX7Mtl7pTH3wvS7I-JIvZ9GHBcyFtnhNK2cUV-flaKxjXaaVHgx__gQ_mFoWzhrWmUdkKaguCCYh6JMnZ-yukY8slz8Odo_Dkaf47GX6IpLZ8e5waKoe9yGGKipz5jFUiA4j5cXELEp7KS4Fwj_wL5Ypbk</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Qing Wu, Qing Wu</creator><creator>Xueqin Shen, Xueqin Shen</creator><creator>Ying Li, Ying Li</creator><creator>Guizhi Xu, Guizhi Xu</creator><creator>Weili Yan, Weili Yan</creator><creator>Guoya Dong, Guoya Dong</creator><creator>Qingxin Yang, Qingxin Yang</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7TK</scope></search><sort><creationdate>20050501</creationdate><title>Classifying the multiplicity of the EEG source models using sphere-shaped support vector Machines</title><author>Qing Wu, Qing Wu ; Xueqin Shen, Xueqin Shen ; Ying Li, Ying Li ; Guizhi Xu, Guizhi Xu ; Weili Yan, Weili Yan ; Guoya Dong, Guoya Dong ; Qingxin Yang, Qingxin Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-e903b3129880defccd223aa8c4142dca1572608b1d916f0bb95349dc647f4d253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Brain modeling</topic><topic>Computer science</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>EEG source model</topic><topic>Electroencephalography</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic modeling</topic><topic>Exact sciences and technology</topic><topic>Magnetism</topic><topic>Materials science</topic><topic>multiclass classification</topic><topic>Other topics in materials science</topic><topic>Physics</topic><topic>Predictive models</topic><topic>Quadratic programming</topic><topic>Scalp</topic><topic>sphere classifier</topic><topic>support vector machine</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Qing Wu, Qing Wu</creatorcontrib><creatorcontrib>Xueqin Shen, Xueqin Shen</creatorcontrib><creatorcontrib>Ying Li, Ying Li</creatorcontrib><creatorcontrib>Guizhi Xu, Guizhi Xu</creatorcontrib><creatorcontrib>Weili Yan, Weili Yan</creatorcontrib><creatorcontrib>Guoya Dong, Guoya Dong</creatorcontrib><creatorcontrib>Qingxin Yang, Qingxin Yang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Neurosciences Abstracts</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qing Wu, Qing Wu</au><au>Xueqin Shen, Xueqin Shen</au><au>Ying Li, Ying Li</au><au>Guizhi Xu, Guizhi Xu</au><au>Weili Yan, Weili Yan</au><au>Guoya Dong, Guoya Dong</au><au>Qingxin Yang, Qingxin Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classifying the multiplicity of the EEG source models using sphere-shaped support vector Machines</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2005-05-01</date><risdate>2005</risdate><volume>41</volume><issue>5</issue><spage>1912</spage><epage>1915</epage><pages>1912-1915</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Support vector machines (SVMs) are learning algorithms derived from statistical learning theory, and originally designed to solve binary classification problems. How to effectively extend SVMs for multiclass classification problems is still an ongoing research issue. In this paper, a sphere-shaped SVM for multiclass problems is presented. Compared with the classical plane-shaped SVMs, the number of convex quadratic programming problems and the number of variables in each programming are smaller. Such SVM classifier is applied to the electroencephalogram (EEG) source localization problem, and the multiplicity of source models is determined according to the potentials recorded on the scalp. Experimental results indicate that the sphere-shaped SVM based classifier is an effective and promising approach for this task.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2005.846231</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2005-05, Vol.41 (5), p.1912-1915
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_1430997
source IEEE Electronic Library (IEL)
subjects Brain modeling
Computer science
Cross-disciplinary physics: materials science
rheology
EEG source model
Electroencephalography
Electromagnetic fields
Electromagnetic modeling
Exact sciences and technology
Magnetism
Materials science
multiclass classification
Other topics in materials science
Physics
Predictive models
Quadratic programming
Scalp
sphere classifier
support vector machine
Support vector machine classification
Support vector machines
title Classifying the multiplicity of the EEG source models using sphere-shaped support vector Machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classifying%20the%20multiplicity%20of%20the%20EEG%20source%20models%20using%20sphere-shaped%20support%20vector%20Machines&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Qing%20Wu,%20Qing%20Wu&rft.date=2005-05-01&rft.volume=41&rft.issue=5&rft.spage=1912&rft.epage=1915&rft.pages=1912-1915&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2005.846231&rft_dat=%3Cproquest_RIE%3E27975952%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867459236&rft_id=info:pmid/&rft_ieee_id=1430997&rfr_iscdi=true