A comparison of some clustering techniques via color segmentation

This paper proposes a new improved modified mountain clustering technique. The proposed technique is being compared with some existing techniques such as FCM, Gath-Geva, probabilistic clustering and modified mountain clustering. The performance of all these clustering techniques is compared by apply...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Agarwal, S., Madasu, S., Hanmandlu, M., Vasikarla, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153 Vol. 2
container_issue
container_start_page 147
container_title
container_volume 2
creator Agarwal, S.
Madasu, S.
Hanmandlu, M.
Vasikarla, S.
description This paper proposes a new improved modified mountain clustering technique. The proposed technique is being compared with some existing techniques such as FCM, Gath-Geva, probabilistic clustering and modified mountain clustering. The performance of all these clustering techniques is compared by applying them to color segmentation in terms of cluster validity and computational complexity.
doi_str_mv 10.1109/ITCC.2005.4
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1425137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1425137</ieee_id><sourcerecordid>1425137</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c6869366d51b481df8cfc0b7a27fdf1353341763885ca2b2df46e263108e6c903</originalsourceid><addsrcrecordid>eNotjLtOwzAUQC0hJKB0YmTxDyTYvn6OUcSjUqUuZa4c57oYJXGJUyT-nkpwlrMcHUIeOKs5Z-5ps2_bWjCmanlF7pjRTgngCm7IupRPdgGcdJrdkqahIY8nP6eSJ5ojLXlEGoZzWXBO05EuGD6m9HXGQr-Tv8RDnmnB44jT4peUp3tyHf1QcP3vFXl_ed63b9V297ppm22VuFFLFbTVDrTuFe-k5X20IQbWGS9M7CMHBSC50WCtCl50oo9So9DAmUUdHIMVefz7JkQ8nOY0-vnnwKVQHAz8Ah45Rqk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A comparison of some clustering techniques via color segmentation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Agarwal, S. ; Madasu, S. ; Hanmandlu, M. ; Vasikarla, S.</creator><creatorcontrib>Agarwal, S. ; Madasu, S. ; Hanmandlu, M. ; Vasikarla, S.</creatorcontrib><description>This paper proposes a new improved modified mountain clustering technique. The proposed technique is being compared with some existing techniques such as FCM, Gath-Geva, probabilistic clustering and modified mountain clustering. The performance of all these clustering techniques is compared by applying them to color segmentation in terms of cluster validity and computational complexity.</description><identifier>ISBN: 0769523153</identifier><identifier>ISBN: 9780769523156</identifier><identifier>DOI: 10.1109/ITCC.2005.4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Clustering methods ; Color segmentation ; Computational complexity ; Data mining ; EM algorithm and cluster validity ; Fuzzy set theory ; Gath-Geva and Fuzzy C-Means clustering techniques ; Image retrieval ; Image segmentation ; Information retrieval ; Modified mountain ; Pattern classification ; Probabilistic ; Set theory</subject><ispartof>International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II, 2005, Vol.2, p.147-153 Vol. 2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1425137$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,4049,4050,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1425137$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Agarwal, S.</creatorcontrib><creatorcontrib>Madasu, S.</creatorcontrib><creatorcontrib>Hanmandlu, M.</creatorcontrib><creatorcontrib>Vasikarla, S.</creatorcontrib><title>A comparison of some clustering techniques via color segmentation</title><title>International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II</title><addtitle>ITCC</addtitle><description>This paper proposes a new improved modified mountain clustering technique. The proposed technique is being compared with some existing techniques such as FCM, Gath-Geva, probabilistic clustering and modified mountain clustering. The performance of all these clustering techniques is compared by applying them to color segmentation in terms of cluster validity and computational complexity.</description><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>Color segmentation</subject><subject>Computational complexity</subject><subject>Data mining</subject><subject>EM algorithm and cluster validity</subject><subject>Fuzzy set theory</subject><subject>Gath-Geva and Fuzzy C-Means clustering techniques</subject><subject>Image retrieval</subject><subject>Image segmentation</subject><subject>Information retrieval</subject><subject>Modified mountain</subject><subject>Pattern classification</subject><subject>Probabilistic</subject><subject>Set theory</subject><isbn>0769523153</isbn><isbn>9780769523156</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjLtOwzAUQC0hJKB0YmTxDyTYvn6OUcSjUqUuZa4c57oYJXGJUyT-nkpwlrMcHUIeOKs5Z-5ps2_bWjCmanlF7pjRTgngCm7IupRPdgGcdJrdkqahIY8nP6eSJ5ojLXlEGoZzWXBO05EuGD6m9HXGQr-Tv8RDnmnB44jT4peUp3tyHf1QcP3vFXl_ed63b9V297ppm22VuFFLFbTVDrTuFe-k5X20IQbWGS9M7CMHBSC50WCtCl50oo9So9DAmUUdHIMVefz7JkQ8nOY0-vnnwKVQHAz8Ah45Rqk</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Agarwal, S.</creator><creator>Madasu, S.</creator><creator>Hanmandlu, M.</creator><creator>Vasikarla, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>A comparison of some clustering techniques via color segmentation</title><author>Agarwal, S. ; Madasu, S. ; Hanmandlu, M. ; Vasikarla, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c6869366d51b481df8cfc0b7a27fdf1353341763885ca2b2df46e263108e6c903</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>Color segmentation</topic><topic>Computational complexity</topic><topic>Data mining</topic><topic>EM algorithm and cluster validity</topic><topic>Fuzzy set theory</topic><topic>Gath-Geva and Fuzzy C-Means clustering techniques</topic><topic>Image retrieval</topic><topic>Image segmentation</topic><topic>Information retrieval</topic><topic>Modified mountain</topic><topic>Pattern classification</topic><topic>Probabilistic</topic><topic>Set theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Agarwal, S.</creatorcontrib><creatorcontrib>Madasu, S.</creatorcontrib><creatorcontrib>Hanmandlu, M.</creatorcontrib><creatorcontrib>Vasikarla, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Agarwal, S.</au><au>Madasu, S.</au><au>Hanmandlu, M.</au><au>Vasikarla, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A comparison of some clustering techniques via color segmentation</atitle><btitle>International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II</btitle><stitle>ITCC</stitle><date>2005</date><risdate>2005</risdate><volume>2</volume><spage>147</spage><epage>153 Vol. 2</epage><pages>147-153 Vol. 2</pages><isbn>0769523153</isbn><isbn>9780769523156</isbn><abstract>This paper proposes a new improved modified mountain clustering technique. The proposed technique is being compared with some existing techniques such as FCM, Gath-Geva, probabilistic clustering and modified mountain clustering. The performance of all these clustering techniques is compared by applying them to color segmentation in terms of cluster validity and computational complexity.</abstract><pub>IEEE</pub><doi>10.1109/ITCC.2005.4</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769523153
ispartof International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II, 2005, Vol.2, p.147-153 Vol. 2
issn
language eng
recordid cdi_ieee_primary_1425137
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clustering algorithms
Clustering methods
Color segmentation
Computational complexity
Data mining
EM algorithm and cluster validity
Fuzzy set theory
Gath-Geva and Fuzzy C-Means clustering techniques
Image retrieval
Image segmentation
Information retrieval
Modified mountain
Pattern classification
Probabilistic
Set theory
title A comparison of some clustering techniques via color segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A46%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20comparison%20of%20some%20clustering%20techniques%20via%20color%20segmentation&rft.btitle=International%20Conference%20on%20Information%20Technology:%20Coding%20and%20Computing%20(ITCC'05)%20-%20Volume%20II&rft.au=Agarwal,%20S.&rft.date=2005&rft.volume=2&rft.spage=147&rft.epage=153%20Vol.%202&rft.pages=147-153%20Vol.%202&rft.isbn=0769523153&rft.isbn_list=9780769523156&rft_id=info:doi/10.1109/ITCC.2005.4&rft_dat=%3Cieee_6IE%3E1425137%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1425137&rfr_iscdi=true