Multiprocessor implementations of neural networks

Four methodologies were developed to explore the potential of using affordable multiprocessor computers to implement commercially available neural networks currently run on single processor systems. The methodologies-layer, cross-layer, pipeline, and hybrid-are based on a framework built around the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bennington, R.W., DeClaris, N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 325
container_issue
container_start_page 323
container_title
container_volume
creator Bennington, R.W.
DeClaris, N.
description Four methodologies were developed to explore the potential of using affordable multiprocessor computers to implement commercially available neural networks currently run on single processor systems. The methodologies-layer, cross-layer, pipeline, and hybrid-are based on a framework built around the concepts of program decomposition, load balancing, communication overhead, and process synchronization. The methods were tested on a bus-based multiprocessor running two backpropagation network simulators, and the simulation results are reported. The pipeline and hybrid methods exhibited speedups of 1.6 and 1.9 per processor, respectively, for networks ranging in size from six to 20000 connections. These results indicate that it is possible to increase network simulation speeds and network size capabilities significantly.< >
doi_str_mv 10.1109/ICSMC.1990.142120
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_142120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>142120</ieee_id><sourcerecordid>142120</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-a1318158e2a85aafca49619cc931c7f36a60771c674274d78375d0cd7d77ea603</originalsourceid><addsrcrecordid>eNotj81KxDAUhQMiKGMfQFd9gY65-elNllL8GZhhFup6COktRNumJBnEt7cwns3H4YMDh7F74FsAbh933fuh24K1a1cCBL9ilUXDDVoltEV9w6qcv_gapYFzecvgcB5LWFL0lHNMdZiWkSaaiyshzrmOQz3TOblxRfmJ6TvfsevBjZmqf27Y58vzR_fW7I-vu-5p3wRAURoHEgxoQ8IZ7dzgnbItWO-tBI-DbF3LEcG3qASqHo1E3XPfY49Iq5Mb9nDZDUR0WlKYXPo9XX7JPwUpQwU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multiprocessor implementations of neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bennington, R.W. ; DeClaris, N.</creator><creatorcontrib>Bennington, R.W. ; DeClaris, N.</creatorcontrib><description>Four methodologies were developed to explore the potential of using affordable multiprocessor computers to implement commercially available neural networks currently run on single processor systems. The methodologies-layer, cross-layer, pipeline, and hybrid-are based on a framework built around the concepts of program decomposition, load balancing, communication overhead, and process synchronization. The methods were tested on a bus-based multiprocessor running two backpropagation network simulators, and the simulation results are reported. The pipeline and hybrid methods exhibited speedups of 1.6 and 1.9 per processor, respectively, for networks ranging in size from six to 20000 connections. These results indicate that it is possible to increase network simulation speeds and network size capabilities significantly.&lt; &gt;</description><identifier>ISBN: 9780879425975</identifier><identifier>ISBN: 0879425970</identifier><identifier>DOI: 10.1109/ICSMC.1990.142120</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical informatics ; Computer science ; Error correction ; Medical simulation ; Multiprocessing systems ; Network topology ; Neural networks ; Parallel processing ; Pipelines ; System testing</subject><ispartof>1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings, 1990, p.323-325</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/142120$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/142120$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bennington, R.W.</creatorcontrib><creatorcontrib>DeClaris, N.</creatorcontrib><title>Multiprocessor implementations of neural networks</title><title>1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings</title><addtitle>ICSMC</addtitle><description>Four methodologies were developed to explore the potential of using affordable multiprocessor computers to implement commercially available neural networks currently run on single processor systems. The methodologies-layer, cross-layer, pipeline, and hybrid-are based on a framework built around the concepts of program decomposition, load balancing, communication overhead, and process synchronization. The methods were tested on a bus-based multiprocessor running two backpropagation network simulators, and the simulation results are reported. The pipeline and hybrid methods exhibited speedups of 1.6 and 1.9 per processor, respectively, for networks ranging in size from six to 20000 connections. These results indicate that it is possible to increase network simulation speeds and network size capabilities significantly.&lt; &gt;</description><subject>Biomedical informatics</subject><subject>Computer science</subject><subject>Error correction</subject><subject>Medical simulation</subject><subject>Multiprocessing systems</subject><subject>Network topology</subject><subject>Neural networks</subject><subject>Parallel processing</subject><subject>Pipelines</subject><subject>System testing</subject><isbn>9780879425975</isbn><isbn>0879425970</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1990</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KxDAUhQMiKGMfQFd9gY65-elNllL8GZhhFup6COktRNumJBnEt7cwns3H4YMDh7F74FsAbh933fuh24K1a1cCBL9ilUXDDVoltEV9w6qcv_gapYFzecvgcB5LWFL0lHNMdZiWkSaaiyshzrmOQz3TOblxRfmJ6TvfsevBjZmqf27Y58vzR_fW7I-vu-5p3wRAURoHEgxoQ8IZ7dzgnbItWO-tBI-DbF3LEcG3qASqHo1E3XPfY49Iq5Mb9nDZDUR0WlKYXPo9XX7JPwUpQwU</recordid><startdate>1990</startdate><enddate>1990</enddate><creator>Bennington, R.W.</creator><creator>DeClaris, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1990</creationdate><title>Multiprocessor implementations of neural networks</title><author>Bennington, R.W. ; DeClaris, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-a1318158e2a85aafca49619cc931c7f36a60771c674274d78375d0cd7d77ea603</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Biomedical informatics</topic><topic>Computer science</topic><topic>Error correction</topic><topic>Medical simulation</topic><topic>Multiprocessing systems</topic><topic>Network topology</topic><topic>Neural networks</topic><topic>Parallel processing</topic><topic>Pipelines</topic><topic>System testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Bennington, R.W.</creatorcontrib><creatorcontrib>DeClaris, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bennington, R.W.</au><au>DeClaris, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multiprocessor implementations of neural networks</atitle><btitle>1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings</btitle><stitle>ICSMC</stitle><date>1990</date><risdate>1990</risdate><spage>323</spage><epage>325</epage><pages>323-325</pages><isbn>9780879425975</isbn><isbn>0879425970</isbn><abstract>Four methodologies were developed to explore the potential of using affordable multiprocessor computers to implement commercially available neural networks currently run on single processor systems. The methodologies-layer, cross-layer, pipeline, and hybrid-are based on a framework built around the concepts of program decomposition, load balancing, communication overhead, and process synchronization. The methods were tested on a bus-based multiprocessor running two backpropagation network simulators, and the simulation results are reported. The pipeline and hybrid methods exhibited speedups of 1.6 and 1.9 per processor, respectively, for networks ranging in size from six to 20000 connections. These results indicate that it is possible to increase network simulation speeds and network size capabilities significantly.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.1990.142120</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780879425975
ispartof 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings, 1990, p.323-325
issn
language eng
recordid cdi_ieee_primary_142120
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical informatics
Computer science
Error correction
Medical simulation
Multiprocessing systems
Network topology
Neural networks
Parallel processing
Pipelines
System testing
title Multiprocessor implementations of neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A31%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multiprocessor%20implementations%20of%20neural%20networks&rft.btitle=1990%20IEEE%20International%20Conference%20on%20Systems,%20Man,%20and%20Cybernetics%20Conference%20Proceedings&rft.au=Bennington,%20R.W.&rft.date=1990&rft.spage=323&rft.epage=325&rft.pages=323-325&rft.isbn=9780879425975&rft.isbn_list=0879425970&rft_id=info:doi/10.1109/ICSMC.1990.142120&rft_dat=%3Cieee_6IE%3E142120%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=142120&rfr_iscdi=true