New neural network based mobile location estimation in urban propagation models
Location estimation finds its applications in many important decisions in cellular networks. Hand offs, cellular fraud detection and location sensitive billing are some of the examples. Many different techniques are currently in use. This work first gives an overview of conventional location estimat...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 150 |
---|---|
container_issue | |
container_start_page | 146 |
container_title | |
container_volume | |
creator | Muhammad, J. Hussain, A. Ahmed, W.M. |
description | Location estimation finds its applications in many important decisions in cellular networks. Hand offs, cellular fraud detection and location sensitive billing are some of the examples. Many different techniques are currently in use. This work first gives an overview of conventional location estimation techniques and applications, and a new signal-strength based neural network technique is then presented. A mobile architecture based on a simulated urban environment is used to assess the generalization performance of the feed forward multi-layered perceptron (MLP) neural network. |
doi_str_mv | 10.1109/INMIC.2003.1416679 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1416679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1416679</ieee_id><sourcerecordid>1416679</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1ba046a1bb662c0e44654ec769461f52fdc307a1b129baa1c1d842b519e1abda3</originalsourceid><addsrcrecordid>eNotT81qwzAYM4zBtq4vsF38Asn8xY4TH0fYT6BrL72Xz8mX4S2Jg51S9vYLpLpISCAkxp5ApADCvNT7r7pKMyFkCgq0LswNexBFKWQJpYQ7to3xRyyQJs8Lfc8Oe7rwkc4B-4Xmiw-_3GKklg_eup547xucnR85xdkNq3QjPweLI5-Cn_B7NQffUh8f2W2HfaTtlTfs-P52rD6T3eGjrl53iTNiTsCiUBrBWq2zRpBSOlfUFNooDV2edW0jRbHkkBmLCA20pcpsDoYAbYtyw57XWkdEpyksy8Lf6XpZ_gNoG04L</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>New neural network based mobile location estimation in urban propagation models</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Muhammad, J. ; Hussain, A. ; Ahmed, W.M.</creator><creatorcontrib>Muhammad, J. ; Hussain, A. ; Ahmed, W.M.</creatorcontrib><description>Location estimation finds its applications in many important decisions in cellular networks. Hand offs, cellular fraud detection and location sensitive billing are some of the examples. Many different techniques are currently in use. This work first gives an overview of conventional location estimation techniques and applications, and a new signal-strength based neural network technique is then presented. A mobile architecture based on a simulated urban environment is used to assess the generalization performance of the feed forward multi-layered perceptron (MLP) neural network.</description><identifier>ISBN: 0780381831</identifier><identifier>ISBN: 9780780381834</identifier><identifier>DOI: 10.1109/INMIC.2003.1416679</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cellular networks ; Central office ; Communication switching ; Global Positioning System ; Intelligent networks ; Land mobile radio cellular systems ; Mathematical model ; Neural networks ; Telephone sets ; Telephony</subject><ispartof>7th International Multi Topic Conference, 2003. INMIC 2003, 2003, p.146-150</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1416679$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1416679$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Muhammad, J.</creatorcontrib><creatorcontrib>Hussain, A.</creatorcontrib><creatorcontrib>Ahmed, W.M.</creatorcontrib><title>New neural network based mobile location estimation in urban propagation models</title><title>7th International Multi Topic Conference, 2003. INMIC 2003</title><addtitle>INMIC</addtitle><description>Location estimation finds its applications in many important decisions in cellular networks. Hand offs, cellular fraud detection and location sensitive billing are some of the examples. Many different techniques are currently in use. This work first gives an overview of conventional location estimation techniques and applications, and a new signal-strength based neural network technique is then presented. A mobile architecture based on a simulated urban environment is used to assess the generalization performance of the feed forward multi-layered perceptron (MLP) neural network.</description><subject>Cellular networks</subject><subject>Central office</subject><subject>Communication switching</subject><subject>Global Positioning System</subject><subject>Intelligent networks</subject><subject>Land mobile radio cellular systems</subject><subject>Mathematical model</subject><subject>Neural networks</subject><subject>Telephone sets</subject><subject>Telephony</subject><isbn>0780381831</isbn><isbn>9780780381834</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT81qwzAYM4zBtq4vsF38Asn8xY4TH0fYT6BrL72Xz8mX4S2Jg51S9vYLpLpISCAkxp5ApADCvNT7r7pKMyFkCgq0LswNexBFKWQJpYQ7to3xRyyQJs8Lfc8Oe7rwkc4B-4Xmiw-_3GKklg_eup547xucnR85xdkNq3QjPweLI5-Cn_B7NQffUh8f2W2HfaTtlTfs-P52rD6T3eGjrl53iTNiTsCiUBrBWq2zRpBSOlfUFNooDV2edW0jRbHkkBmLCA20pcpsDoYAbYtyw57XWkdEpyksy8Lf6XpZ_gNoG04L</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Muhammad, J.</creator><creator>Hussain, A.</creator><creator>Ahmed, W.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>New neural network based mobile location estimation in urban propagation models</title><author>Muhammad, J. ; Hussain, A. ; Ahmed, W.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1ba046a1bb662c0e44654ec769461f52fdc307a1b129baa1c1d842b519e1abda3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Cellular networks</topic><topic>Central office</topic><topic>Communication switching</topic><topic>Global Positioning System</topic><topic>Intelligent networks</topic><topic>Land mobile radio cellular systems</topic><topic>Mathematical model</topic><topic>Neural networks</topic><topic>Telephone sets</topic><topic>Telephony</topic><toplevel>online_resources</toplevel><creatorcontrib>Muhammad, J.</creatorcontrib><creatorcontrib>Hussain, A.</creatorcontrib><creatorcontrib>Ahmed, W.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Muhammad, J.</au><au>Hussain, A.</au><au>Ahmed, W.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>New neural network based mobile location estimation in urban propagation models</atitle><btitle>7th International Multi Topic Conference, 2003. INMIC 2003</btitle><stitle>INMIC</stitle><date>2003</date><risdate>2003</risdate><spage>146</spage><epage>150</epage><pages>146-150</pages><isbn>0780381831</isbn><isbn>9780780381834</isbn><abstract>Location estimation finds its applications in many important decisions in cellular networks. Hand offs, cellular fraud detection and location sensitive billing are some of the examples. Many different techniques are currently in use. This work first gives an overview of conventional location estimation techniques and applications, and a new signal-strength based neural network technique is then presented. A mobile architecture based on a simulated urban environment is used to assess the generalization performance of the feed forward multi-layered perceptron (MLP) neural network.</abstract><pub>IEEE</pub><doi>10.1109/INMIC.2003.1416679</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780381831 |
ispartof | 7th International Multi Topic Conference, 2003. INMIC 2003, 2003, p.146-150 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1416679 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cellular networks Central office Communication switching Global Positioning System Intelligent networks Land mobile radio cellular systems Mathematical model Neural networks Telephone sets Telephony |
title | New neural network based mobile location estimation in urban propagation models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A26%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=New%20neural%20network%20based%20mobile%20location%20estimation%20in%20urban%20propagation%20models&rft.btitle=7th%20International%20Multi%20Topic%20Conference,%202003.%20INMIC%202003&rft.au=Muhammad,%20J.&rft.date=2003&rft.spage=146&rft.epage=150&rft.pages=146-150&rft.isbn=0780381831&rft.isbn_list=9780780381834&rft_id=info:doi/10.1109/INMIC.2003.1416679&rft_dat=%3Cieee_6IE%3E1416679%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1416679&rfr_iscdi=true |