Cross-validation and neural network architecture selection for the classification of intracranial current sources

In the present paper, a new methodological approach, for the classification of first episode schizophrenic patients (FES) against normal controls, is proposed. The first step of the methodology applied is the feature extraction, which is based on the combination of the multivariate autoregressive mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vasios, C.E., Matsopoulos, G.K., Ventouras, E.M., Nikita, K.S., Uzunoglu, N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 158
container_issue
container_start_page 151
container_title
container_volume
creator Vasios, C.E.
Matsopoulos, G.K.
Ventouras, E.M.
Nikita, K.S.
Uzunoglu, N.
description In the present paper, a new methodological approach, for the classification of first episode schizophrenic patients (FES) against normal controls, is proposed. The first step of the methodology applied is the feature extraction, which is based on the combination of the multivariate autoregressive model with the simulated annealing technique, in order to extract optimum features, in terms of classification rate. The classification, as the second step of the methodology, is implemented by means of an artificial neural network (ANN) trained with the backpropagation algorithm under "leave-one-out cross-validation". The ANN is a multilayer perceptron, the architecture of which is selected after a detailed search. The proposed methodology has been applied for the classification of FES patients and normal controls using as input signals the intracranial current sources obtained by the inversion of event-related potentials (ERP) using an algebraic reconstruction technique. Results implementing the proposed methodology provide classification rates of up to 93%.
doi_str_mv 10.1109/NEUREL.2004.1416561
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1416561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1416561</ieee_id><sourcerecordid>1416561</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e64068f070f6bea9131fe57f7083c68cfd617e4bb372d131b8bc1c382bb5e3233</originalsourceid><addsrcrecordid>eNotkN1KxDAQRgMiKGufYG_yAq1JkybppZT1B5YVxL1eknTCRmurk1Tx7a3sDgPng284F0PImrOKc9be7jb7l822qhmTFZdcNYpfkKLVhi0rTCO1vCJFSm9sGdE2Wqpr8tXhlFL5bYfY2xynkdqxpyPMaIcF-WfCd2rRH2MGn2cEmmBY0v9lmJDmI1A_2JRiiP4kmAKNY0br0Y5xsfgZEcZM0zSjh3RDLoMdEhRnrsj-fvPaPZbb54en7m5bRq6bXIKSTJnANAvKgW254AEaHTQzwivjQ6-4Bumc0HW_lM44z70wtXMNiFqIFVmfvBEADp8YPyz-Hs6PEX-VP1yb</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Cross-validation and neural network architecture selection for the classification of intracranial current sources</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Vasios, C.E. ; Matsopoulos, G.K. ; Ventouras, E.M. ; Nikita, K.S. ; Uzunoglu, N.</creator><creatorcontrib>Vasios, C.E. ; Matsopoulos, G.K. ; Ventouras, E.M. ; Nikita, K.S. ; Uzunoglu, N.</creatorcontrib><description>In the present paper, a new methodological approach, for the classification of first episode schizophrenic patients (FES) against normal controls, is proposed. The first step of the methodology applied is the feature extraction, which is based on the combination of the multivariate autoregressive model with the simulated annealing technique, in order to extract optimum features, in terms of classification rate. The classification, as the second step of the methodology, is implemented by means of an artificial neural network (ANN) trained with the backpropagation algorithm under "leave-one-out cross-validation". The ANN is a multilayer perceptron, the architecture of which is selected after a detailed search. The proposed methodology has been applied for the classification of FES patients and normal controls using as input signals the intracranial current sources obtained by the inversion of event-related potentials (ERP) using an algebraic reconstruction technique. Results implementing the proposed methodology provide classification rates of up to 93%.</description><identifier>ISBN: 9780780385474</identifier><identifier>ISBN: 0780385470</identifier><identifier>DOI: 10.1109/NEUREL.2004.1416561</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Biomedical imaging ; Brain modeling ; Computer architecture ; Data mining ; Electroencephalography ; Enterprise resource planning ; Equations ; Feature extraction ; Neural networks</subject><ispartof>7th Seminar on Neural Network Applications in Electrical Engineering, 2004. NEUREL 2004. 2004, 2004, p.151-158</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1416561$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1416561$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vasios, C.E.</creatorcontrib><creatorcontrib>Matsopoulos, G.K.</creatorcontrib><creatorcontrib>Ventouras, E.M.</creatorcontrib><creatorcontrib>Nikita, K.S.</creatorcontrib><creatorcontrib>Uzunoglu, N.</creatorcontrib><title>Cross-validation and neural network architecture selection for the classification of intracranial current sources</title><title>7th Seminar on Neural Network Applications in Electrical Engineering, 2004. NEUREL 2004. 2004</title><addtitle>NEUREL</addtitle><description>In the present paper, a new methodological approach, for the classification of first episode schizophrenic patients (FES) against normal controls, is proposed. The first step of the methodology applied is the feature extraction, which is based on the combination of the multivariate autoregressive model with the simulated annealing technique, in order to extract optimum features, in terms of classification rate. The classification, as the second step of the methodology, is implemented by means of an artificial neural network (ANN) trained with the backpropagation algorithm under "leave-one-out cross-validation". The ANN is a multilayer perceptron, the architecture of which is selected after a detailed search. The proposed methodology has been applied for the classification of FES patients and normal controls using as input signals the intracranial current sources obtained by the inversion of event-related potentials (ERP) using an algebraic reconstruction technique. Results implementing the proposed methodology provide classification rates of up to 93%.</description><subject>Artificial neural networks</subject><subject>Biomedical imaging</subject><subject>Brain modeling</subject><subject>Computer architecture</subject><subject>Data mining</subject><subject>Electroencephalography</subject><subject>Enterprise resource planning</subject><subject>Equations</subject><subject>Feature extraction</subject><subject>Neural networks</subject><isbn>9780780385474</isbn><isbn>0780385470</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkN1KxDAQRgMiKGufYG_yAq1JkybppZT1B5YVxL1eknTCRmurk1Tx7a3sDgPng284F0PImrOKc9be7jb7l822qhmTFZdcNYpfkKLVhi0rTCO1vCJFSm9sGdE2Wqpr8tXhlFL5bYfY2xynkdqxpyPMaIcF-WfCd2rRH2MGn2cEmmBY0v9lmJDmI1A_2JRiiP4kmAKNY0br0Y5xsfgZEcZM0zSjh3RDLoMdEhRnrsj-fvPaPZbb54en7m5bRq6bXIKSTJnANAvKgW254AEaHTQzwivjQ6-4Bumc0HW_lM44z70wtXMNiFqIFVmfvBEADp8YPyz-Hs6PEX-VP1yb</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Vasios, C.E.</creator><creator>Matsopoulos, G.K.</creator><creator>Ventouras, E.M.</creator><creator>Nikita, K.S.</creator><creator>Uzunoglu, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>Cross-validation and neural network architecture selection for the classification of intracranial current sources</title><author>Vasios, C.E. ; Matsopoulos, G.K. ; Ventouras, E.M. ; Nikita, K.S. ; Uzunoglu, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e64068f070f6bea9131fe57f7083c68cfd617e4bb372d131b8bc1c382bb5e3233</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Artificial neural networks</topic><topic>Biomedical imaging</topic><topic>Brain modeling</topic><topic>Computer architecture</topic><topic>Data mining</topic><topic>Electroencephalography</topic><topic>Enterprise resource planning</topic><topic>Equations</topic><topic>Feature extraction</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Vasios, C.E.</creatorcontrib><creatorcontrib>Matsopoulos, G.K.</creatorcontrib><creatorcontrib>Ventouras, E.M.</creatorcontrib><creatorcontrib>Nikita, K.S.</creatorcontrib><creatorcontrib>Uzunoglu, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vasios, C.E.</au><au>Matsopoulos, G.K.</au><au>Ventouras, E.M.</au><au>Nikita, K.S.</au><au>Uzunoglu, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Cross-validation and neural network architecture selection for the classification of intracranial current sources</atitle><btitle>7th Seminar on Neural Network Applications in Electrical Engineering, 2004. NEUREL 2004. 2004</btitle><stitle>NEUREL</stitle><date>2004</date><risdate>2004</risdate><spage>151</spage><epage>158</epage><pages>151-158</pages><isbn>9780780385474</isbn><isbn>0780385470</isbn><abstract>In the present paper, a new methodological approach, for the classification of first episode schizophrenic patients (FES) against normal controls, is proposed. The first step of the methodology applied is the feature extraction, which is based on the combination of the multivariate autoregressive model with the simulated annealing technique, in order to extract optimum features, in terms of classification rate. The classification, as the second step of the methodology, is implemented by means of an artificial neural network (ANN) trained with the backpropagation algorithm under "leave-one-out cross-validation". The ANN is a multilayer perceptron, the architecture of which is selected after a detailed search. The proposed methodology has been applied for the classification of FES patients and normal controls using as input signals the intracranial current sources obtained by the inversion of event-related potentials (ERP) using an algebraic reconstruction technique. Results implementing the proposed methodology provide classification rates of up to 93%.</abstract><pub>IEEE</pub><doi>10.1109/NEUREL.2004.1416561</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780385474
ispartof 7th Seminar on Neural Network Applications in Electrical Engineering, 2004. NEUREL 2004. 2004, 2004, p.151-158
issn
language eng
recordid cdi_ieee_primary_1416561
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Biomedical imaging
Brain modeling
Computer architecture
Data mining
Electroencephalography
Enterprise resource planning
Equations
Feature extraction
Neural networks
title Cross-validation and neural network architecture selection for the classification of intracranial current sources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Cross-validation%20and%20neural%20network%20architecture%20selection%20for%20the%20classification%20of%20intracranial%20current%20sources&rft.btitle=7th%20Seminar%20on%20Neural%20Network%20Applications%20in%20Electrical%20Engineering,%202004.%20NEUREL%202004.%202004&rft.au=Vasios,%20C.E.&rft.date=2004&rft.spage=151&rft.epage=158&rft.pages=151-158&rft.isbn=9780780385474&rft.isbn_list=0780385470&rft_id=info:doi/10.1109/NEUREL.2004.1416561&rft_dat=%3Cieee_6IE%3E1416561%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1416561&rfr_iscdi=true