Relationships between radar ambiguity and coding theory
We investigate the theory of the finite discrete Heisenberg-Weyl group in relation to the development of adaptive radar. We contend that this group can form the basis for the representation of the radar environment in terms of operators on the space of waveforms. We also demonstrate, following recen...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the theory of the finite discrete Heisenberg-Weyl group in relation to the development of adaptive radar. We contend that this group can form the basis for the representation of the radar environment in terms of operators on the space of waveforms. We also demonstrate, following recent developments in the theory of error correcting codes, that the finite discrete Heisenberg-Weyl group provides a unified basis for the construction of useful waveforms/sequences for radar, communications and the theory of error correcting codes. |
---|---|
ISSN: | 1520-6149 2379-190X |
DOI: | 10.1109/ICASSP.2005.1416449 |