Reduced complexity bounded error subset selection

A reduced complexity version of the bounded error subset selection (BESS) algorithm is proposed. By relaxing the integer constraint in the original BESS algorithm, we show that the BESS problem can be reformulated as an ordinary linear program instead of an integer program with exponential worst-cas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Alghoniemy, M., Tewfik, A.H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page v/728 Vol. 5
container_issue
container_start_page v/725
container_title
container_volume 5
creator Alghoniemy, M.
Tewfik, A.H.
description A reduced complexity version of the bounded error subset selection (BESS) algorithm is proposed. By relaxing the integer constraint in the original BESS algorithm, we show that the BESS problem can be reformulated as an ordinary linear program instead of an integer program with exponential worst-case complexity. We retain the sparseness of the representation in the modified BESS by weighting the dictionary with the minimum 2-norm solution of the subset selection problem corresponding to the BESS problem at hand. The proposed algorithm is compared to the basis pursuit, orthogonal matching pursuit, and the best orthogonal basis algorithms. It is shown that the proposed algorithm has a better packing property and an improved rate-distortion behavior.
doi_str_mv 10.1109/ICASSP.2005.1416406
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1416406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1416406</ieee_id><sourcerecordid>1416406</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-b36cb9c0f3a6889dd4e63b5c068c787d8ea5fffb8808558923352b777ed5eebf3</originalsourceid><addsrcrecordid>eNotj8tqwzAUREUf0JD6C7LxD9i9el8tS-gjEGhpsuguWNIVuDhxsGxo_r6GZhgYOIthhrEVh5pzcE-b9fNu91kLAF1zxY0Cc8MWQlpXcQfft6xwFmG2RLSK37EF1wIqw5V7YEXOPzDLCGuNWjD-RXEKFMvQH88d_bbjpfT9dIozomHohzJPPtNYZuoojG1_emT3qekyFddcsv3ry379Xm0_3uZp26p1MFZemuBdgCQbg-hiVGSk1wEMBos2IjU6peQRAbVGJ6TUwltrKWoin-SSrf5rWyI6nIf22AyXw_Wv_AN140f9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reduced complexity bounded error subset selection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Alghoniemy, M. ; Tewfik, A.H.</creator><creatorcontrib>Alghoniemy, M. ; Tewfik, A.H.</creatorcontrib><description>A reduced complexity version of the bounded error subset selection (BESS) algorithm is proposed. By relaxing the integer constraint in the original BESS algorithm, we show that the BESS problem can be reformulated as an ordinary linear program instead of an integer program with exponential worst-case complexity. We retain the sparseness of the representation in the modified BESS by weighting the dictionary with the minimum 2-norm solution of the subset selection problem corresponding to the BESS problem at hand. The proposed algorithm is compared to the basis pursuit, orthogonal matching pursuit, and the best orthogonal basis algorithms. It is shown that the proposed algorithm has a better packing property and an improved rate-distortion behavior.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9780780388741</identifier><identifier>ISBN: 0780388747</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.2005.1416406</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Computer errors ; Dictionaries ; Greedy algorithms ; Iterative algorithms ; Matching pursuit algorithms ; Pursuit algorithms ; Signal processing algorithms ; Signal representations ; Vectors</subject><ispartof>Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, 2005, Vol.5, p.v/725-v/728 Vol. 5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1416406$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1416406$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alghoniemy, M.</creatorcontrib><creatorcontrib>Tewfik, A.H.</creatorcontrib><title>Reduced complexity bounded error subset selection</title><title>Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005</title><addtitle>ICASSP</addtitle><description>A reduced complexity version of the bounded error subset selection (BESS) algorithm is proposed. By relaxing the integer constraint in the original BESS algorithm, we show that the BESS problem can be reformulated as an ordinary linear program instead of an integer program with exponential worst-case complexity. We retain the sparseness of the representation in the modified BESS by weighting the dictionary with the minimum 2-norm solution of the subset selection problem corresponding to the BESS problem at hand. The proposed algorithm is compared to the basis pursuit, orthogonal matching pursuit, and the best orthogonal basis algorithms. It is shown that the proposed algorithm has a better packing property and an improved rate-distortion behavior.</description><subject>Approximation algorithms</subject><subject>Computer errors</subject><subject>Dictionaries</subject><subject>Greedy algorithms</subject><subject>Iterative algorithms</subject><subject>Matching pursuit algorithms</subject><subject>Pursuit algorithms</subject><subject>Signal processing algorithms</subject><subject>Signal representations</subject><subject>Vectors</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9780780388741</isbn><isbn>0780388747</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tqwzAUREUf0JD6C7LxD9i9el8tS-gjEGhpsuguWNIVuDhxsGxo_r6GZhgYOIthhrEVh5pzcE-b9fNu91kLAF1zxY0Cc8MWQlpXcQfft6xwFmG2RLSK37EF1wIqw5V7YEXOPzDLCGuNWjD-RXEKFMvQH88d_bbjpfT9dIozomHohzJPPtNYZuoojG1_emT3qekyFddcsv3ry379Xm0_3uZp26p1MFZemuBdgCQbg-hiVGSk1wEMBos2IjU6peQRAbVGJ6TUwltrKWoin-SSrf5rWyI6nIf22AyXw_Wv_AN140f9</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Alghoniemy, M.</creator><creator>Tewfik, A.H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Reduced complexity bounded error subset selection</title><author>Alghoniemy, M. ; Tewfik, A.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-b36cb9c0f3a6889dd4e63b5c068c787d8ea5fffb8808558923352b777ed5eebf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Approximation algorithms</topic><topic>Computer errors</topic><topic>Dictionaries</topic><topic>Greedy algorithms</topic><topic>Iterative algorithms</topic><topic>Matching pursuit algorithms</topic><topic>Pursuit algorithms</topic><topic>Signal processing algorithms</topic><topic>Signal representations</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Alghoniemy, M.</creatorcontrib><creatorcontrib>Tewfik, A.H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alghoniemy, M.</au><au>Tewfik, A.H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reduced complexity bounded error subset selection</atitle><btitle>Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005</btitle><stitle>ICASSP</stitle><date>2005</date><risdate>2005</risdate><volume>5</volume><spage>v/725</spage><epage>v/728 Vol. 5</epage><pages>v/725-v/728 Vol. 5</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9780780388741</isbn><isbn>0780388747</isbn><abstract>A reduced complexity version of the bounded error subset selection (BESS) algorithm is proposed. By relaxing the integer constraint in the original BESS algorithm, we show that the BESS problem can be reformulated as an ordinary linear program instead of an integer program with exponential worst-case complexity. We retain the sparseness of the representation in the modified BESS by weighting the dictionary with the minimum 2-norm solution of the subset selection problem corresponding to the BESS problem at hand. The proposed algorithm is compared to the basis pursuit, orthogonal matching pursuit, and the best orthogonal basis algorithms. It is shown that the proposed algorithm has a better packing property and an improved rate-distortion behavior.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2005.1416406</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, 2005, Vol.5, p.v/725-v/728 Vol. 5
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_1416406
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation algorithms
Computer errors
Dictionaries
Greedy algorithms
Iterative algorithms
Matching pursuit algorithms
Pursuit algorithms
Signal processing algorithms
Signal representations
Vectors
title Reduced complexity bounded error subset selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reduced%20complexity%20bounded%20error%20subset%20selection&rft.btitle=Proceedings.%20(ICASSP%20'05).%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing,%202005&rft.au=Alghoniemy,%20M.&rft.date=2005&rft.volume=5&rft.spage=v/725&rft.epage=v/728%20Vol.%205&rft.pages=v/725-v/728%20Vol.%205&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9780780388741&rft.isbn_list=0780388747&rft_id=info:doi/10.1109/ICASSP.2005.1416406&rft_dat=%3Cieee_6IE%3E1416406%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1416406&rfr_iscdi=true