Dual approach for automated sleep spindles detection within EEG background activity in infant polysomnograms

An automated system for sleep spindles detection within EEG background activity, combining two different approaches, is presented. The first approach applies detection criteria on the sigma-band filtered EEG signal, including fuzzy thresholds. The second approach mimics an expert's procedure. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Held, C.M., Causa, L., Estevez, P., Perez, C., Garrido, M., Algarin, C., Peirano, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 569
container_issue
container_start_page 566
container_title
container_volume 1
creator Held, C.M.
Causa, L.
Estevez, P.
Perez, C.
Garrido, M.
Algarin, C.
Peirano, P.
description An automated system for sleep spindles detection within EEG background activity, combining two different approaches, is presented. The first approach applies detection criteria on the sigma-band filtered EEG signal, including fuzzy thresholds. The second approach mimics an expert's procedure. A sleep spindle detection is validated if both approaches agree. The method was applied on a testing set, consisting of continuous sleep recordings of two patients, totaling 1132 epochs (pages). A total of 803 sleep spindles events were marked by the experts. Results showed an 87.7% agreement between the detection system and the medical experts.
doi_str_mv 10.1109/IEMBS.2004.1403220
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1403220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1403220</ieee_id><sourcerecordid>1403220</sourcerecordid><originalsourceid>FETCH-ieee_primary_14032203</originalsourceid><addsrcrecordid>eNp9zrFuwjAUBVBLqFKh5Qfa5f0A4SWO1GRtCYWBqd3Ra_KSuHVsy3ZA-ftmYOYuV1dnuUK8pJikKZbbY3V6_0oyxDxJc5RZhguxwrcCZZHLUj6KdQi_OEeW8y6WQu9G0kDOeUt1D631QGO0A0VuIGhmB8Ep02gO0HDkOipr4KpirwxU1Sf8UP3XeTuaBmjGi4oTzKRMSyaCs3oKdjC28zSEZ_HQkg68vvWTeN1X3x-HjWLms_NqID-db8flff0HmVZKGg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Dual approach for automated sleep spindles detection within EEG background activity in infant polysomnograms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Held, C.M. ; Causa, L. ; Estevez, P. ; Perez, C. ; Garrido, M. ; Algarin, C. ; Peirano, P.</creator><creatorcontrib>Held, C.M. ; Causa, L. ; Estevez, P. ; Perez, C. ; Garrido, M. ; Algarin, C. ; Peirano, P.</creatorcontrib><description>An automated system for sleep spindles detection within EEG background activity, combining two different approaches, is presented. The first approach applies detection criteria on the sigma-band filtered EEG signal, including fuzzy thresholds. The second approach mimics an expert's procedure. A sleep spindle detection is validated if both approaches agree. The method was applied on a testing set, consisting of continuous sleep recordings of two patients, totaling 1132 epochs (pages). A total of 803 sleep spindles events were marked by the experts. Results showed an 87.7% agreement between the detection system and the medical experts.</description><identifier>ISBN: 0780384393</identifier><identifier>ISBN: 9780780384392</identifier><identifier>DOI: 10.1109/IEMBS.2004.1403220</identifier><language>eng</language><publisher>IEEE</publisher><subject>EEG ; Electroencephalography ; Electromyography ; Electrooculography ; Humans ; infants sleep ; Pathology ; Pattern recognition ; Pediatrics ; Sleep ; sleep spindles ; Support vector machine classification ; Support vector machines</subject><ispartof>The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2004, Vol.1, p.566-569</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1403220$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1403220$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Held, C.M.</creatorcontrib><creatorcontrib>Causa, L.</creatorcontrib><creatorcontrib>Estevez, P.</creatorcontrib><creatorcontrib>Perez, C.</creatorcontrib><creatorcontrib>Garrido, M.</creatorcontrib><creatorcontrib>Algarin, C.</creatorcontrib><creatorcontrib>Peirano, P.</creatorcontrib><title>Dual approach for automated sleep spindles detection within EEG background activity in infant polysomnograms</title><title>The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><description>An automated system for sleep spindles detection within EEG background activity, combining two different approaches, is presented. The first approach applies detection criteria on the sigma-band filtered EEG signal, including fuzzy thresholds. The second approach mimics an expert's procedure. A sleep spindle detection is validated if both approaches agree. The method was applied on a testing set, consisting of continuous sleep recordings of two patients, totaling 1132 epochs (pages). A total of 803 sleep spindles events were marked by the experts. Results showed an 87.7% agreement between the detection system and the medical experts.</description><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electromyography</subject><subject>Electrooculography</subject><subject>Humans</subject><subject>infants sleep</subject><subject>Pathology</subject><subject>Pattern recognition</subject><subject>Pediatrics</subject><subject>Sleep</subject><subject>sleep spindles</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><isbn>0780384393</isbn><isbn>9780780384392</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9zrFuwjAUBVBLqFKh5Qfa5f0A4SWO1GRtCYWBqd3Ra_KSuHVsy3ZA-ftmYOYuV1dnuUK8pJikKZbbY3V6_0oyxDxJc5RZhguxwrcCZZHLUj6KdQi_OEeW8y6WQu9G0kDOeUt1D631QGO0A0VuIGhmB8Ep02gO0HDkOipr4KpirwxU1Sf8UP3XeTuaBmjGi4oTzKRMSyaCs3oKdjC28zSEZ_HQkg68vvWTeN1X3x-HjWLms_NqID-db8flff0HmVZKGg</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Held, C.M.</creator><creator>Causa, L.</creator><creator>Estevez, P.</creator><creator>Perez, C.</creator><creator>Garrido, M.</creator><creator>Algarin, C.</creator><creator>Peirano, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2004</creationdate><title>Dual approach for automated sleep spindles detection within EEG background activity in infant polysomnograms</title><author>Held, C.M. ; Causa, L. ; Estevez, P. ; Perez, C. ; Garrido, M. ; Algarin, C. ; Peirano, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_14032203</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electromyography</topic><topic>Electrooculography</topic><topic>Humans</topic><topic>infants sleep</topic><topic>Pathology</topic><topic>Pattern recognition</topic><topic>Pediatrics</topic><topic>Sleep</topic><topic>sleep spindles</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Held, C.M.</creatorcontrib><creatorcontrib>Causa, L.</creatorcontrib><creatorcontrib>Estevez, P.</creatorcontrib><creatorcontrib>Perez, C.</creatorcontrib><creatorcontrib>Garrido, M.</creatorcontrib><creatorcontrib>Algarin, C.</creatorcontrib><creatorcontrib>Peirano, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Held, C.M.</au><au>Causa, L.</au><au>Estevez, P.</au><au>Perez, C.</au><au>Garrido, M.</au><au>Algarin, C.</au><au>Peirano, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Dual approach for automated sleep spindles detection within EEG background activity in infant polysomnograms</atitle><btitle>The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>IEMBS</stitle><date>2004</date><risdate>2004</risdate><volume>1</volume><spage>566</spage><epage>569</epage><pages>566-569</pages><isbn>0780384393</isbn><isbn>9780780384392</isbn><abstract>An automated system for sleep spindles detection within EEG background activity, combining two different approaches, is presented. The first approach applies detection criteria on the sigma-band filtered EEG signal, including fuzzy thresholds. The second approach mimics an expert's procedure. A sleep spindle detection is validated if both approaches agree. The method was applied on a testing set, consisting of continuous sleep recordings of two patients, totaling 1132 epochs (pages). A total of 803 sleep spindles events were marked by the experts. Results showed an 87.7% agreement between the detection system and the medical experts.</abstract><pub>IEEE</pub><doi>10.1109/IEMBS.2004.1403220</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780384393
ispartof The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2004, Vol.1, p.566-569
issn
language eng
recordid cdi_ieee_primary_1403220
source IEEE Electronic Library (IEL) Conference Proceedings
subjects EEG
Electroencephalography
Electromyography
Electrooculography
Humans
infants sleep
Pathology
Pattern recognition
Pediatrics
Sleep
sleep spindles
Support vector machine classification
Support vector machines
title Dual approach for automated sleep spindles detection within EEG background activity in infant polysomnograms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A56%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Dual%20approach%20for%20automated%20sleep%20spindles%20detection%20within%20EEG%20background%20activity%20in%20infant%20polysomnograms&rft.btitle=The%2026th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Held,%20C.M.&rft.date=2004&rft.volume=1&rft.spage=566&rft.epage=569&rft.pages=566-569&rft.isbn=0780384393&rft.isbn_list=9780780384392&rft_id=info:doi/10.1109/IEMBS.2004.1403220&rft_dat=%3Cieee_6IE%3E1403220%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1403220&rfr_iscdi=true