Using ant colonies to solve data-mining problems

Data mining is a constantly growing area. More and more domains of the daily life take advantage of the available tools (medicine, trade, meteorology, ...). However, such tools are confronted to a particular problem: the great number of characteristics that qualify data samples. They are more or les...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Admane, L., Benatchba, K., Koudil, M., Drias, M., Gharout, S., Hamani, N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3157 vol.4
container_issue
container_start_page 3151
container_title
container_volume 4
creator Admane, L.
Benatchba, K.
Koudil, M.
Drias, M.
Gharout, S.
Hamani, N.
description Data mining is a constantly growing area. More and more domains of the daily life take advantage of the available tools (medicine, trade, meteorology, ...). However, such tools are confronted to a particular problem: the great number of characteristics that qualify data samples. They are more or less victims of the abundance of information. Sat domain benefits from the appearance of powerful solvers that can process huge amounts of data in short times. This paper proposes to solve supervised learning problems expressed as Sat ones. This is done to take advantage of an existing environment that allows experimenting different heuristics, such as: tabu search, genetic algorithm, ant colonies, etc., in order to extract solutions that satisfy a maximum number of clauses (Max-Sat problem). Finally, the best solutions are back-translated into rules that are applied to the data sets in order to verify that they really satisfy a maximum number of instances in the original learning problem.
doi_str_mv 10.1109/ICSMC.2004.1400824
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_1400824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1400824</ieee_id><sourcerecordid>17523924</sourcerecordid><originalsourceid>FETCH-LOGICAL-i205t-c0e7cff44ab6b309a6db273c21961021373b93a2a28de3c180464802ae18c1763</originalsourceid><addsrcrecordid>eNpF0EtLxDAUBeDgA-yM_gHddOOy9d6bNEmXUnwMjLjQAXfDbZpKpC-aIvjvVUZwdRbn4yyOEJcIOSKUN5vq5anKCUDlqAAsqSORUGFMhroojsUKjAVpC63NiUgQNGUl0duZWMX4AUCg0CYCdjEM7ykPS-rGbhyCj-kypnHsPn3a8MJZH4ZfMc1j3fk-novTlrvoL_5yLXb3d6_VY7Z9fthUt9ssEBRL5sAb17ZKca1rCSXrpiYjHWGpEQilkXUpmZhs46VDC0orC8QerUOj5VpcH3Ynjo67dubBhbif5tDz_LVHU5AsSf24q4ML3vv_-vCI_AbwblEN</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using ant colonies to solve data-mining problems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Admane, L. ; Benatchba, K. ; Koudil, M. ; Drias, M. ; Gharout, S. ; Hamani, N.</creator><creatorcontrib>Admane, L. ; Benatchba, K. ; Koudil, M. ; Drias, M. ; Gharout, S. ; Hamani, N.</creatorcontrib><description>Data mining is a constantly growing area. More and more domains of the daily life take advantage of the available tools (medicine, trade, meteorology, ...). However, such tools are confronted to a particular problem: the great number of characteristics that qualify data samples. They are more or less victims of the abundance of information. Sat domain benefits from the appearance of powerful solvers that can process huge amounts of data in short times. This paper proposes to solve supervised learning problems expressed as Sat ones. This is done to take advantage of an existing environment that allows experimenting different heuristics, such as: tabu search, genetic algorithm, ant colonies, etc., in order to extract solutions that satisfy a maximum number of clauses (Max-Sat problem). Finally, the best solutions are back-translated into rules that are applied to the data sets in order to verify that they really satisfy a maximum number of instances in the original learning problem.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 0780385667</identifier><identifier>ISBN: 9780780385665</identifier><identifier>EISSN: 2577-1655</identifier><identifier>DOI: 10.1109/ICSMC.2004.1400824</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Ant colony optimization ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Control theory. Systems ; Data mining ; Data processing. List processing. Character string processing ; Delta modulation ; Diseases ; Exact sciences and technology ; Genetic algorithms ; Marketing and sales ; Medical diagnostic imaging ; Memory organisation. Data processing ; Meteorology ; Software ; Supervised learning</subject><ispartof>2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), 2004, Vol.4, p.3151-3157 vol.4</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1400824$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1400824$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17523924$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Admane, L.</creatorcontrib><creatorcontrib>Benatchba, K.</creatorcontrib><creatorcontrib>Koudil, M.</creatorcontrib><creatorcontrib>Drias, M.</creatorcontrib><creatorcontrib>Gharout, S.</creatorcontrib><creatorcontrib>Hamani, N.</creatorcontrib><title>Using ant colonies to solve data-mining problems</title><title>2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583)</title><addtitle>ICSMC</addtitle><description>Data mining is a constantly growing area. More and more domains of the daily life take advantage of the available tools (medicine, trade, meteorology, ...). However, such tools are confronted to a particular problem: the great number of characteristics that qualify data samples. They are more or less victims of the abundance of information. Sat domain benefits from the appearance of powerful solvers that can process huge amounts of data in short times. This paper proposes to solve supervised learning problems expressed as Sat ones. This is done to take advantage of an existing environment that allows experimenting different heuristics, such as: tabu search, genetic algorithm, ant colonies, etc., in order to extract solutions that satisfy a maximum number of clauses (Max-Sat problem). Finally, the best solutions are back-translated into rules that are applied to the data sets in order to verify that they really satisfy a maximum number of instances in the original learning problem.</description><subject>Ant colony optimization</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Data mining</subject><subject>Data processing. List processing. Character string processing</subject><subject>Delta modulation</subject><subject>Diseases</subject><subject>Exact sciences and technology</subject><subject>Genetic algorithms</subject><subject>Marketing and sales</subject><subject>Medical diagnostic imaging</subject><subject>Memory organisation. Data processing</subject><subject>Meteorology</subject><subject>Software</subject><subject>Supervised learning</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>0780385667</isbn><isbn>9780780385665</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpF0EtLxDAUBeDgA-yM_gHddOOy9d6bNEmXUnwMjLjQAXfDbZpKpC-aIvjvVUZwdRbn4yyOEJcIOSKUN5vq5anKCUDlqAAsqSORUGFMhroojsUKjAVpC63NiUgQNGUl0duZWMX4AUCg0CYCdjEM7ykPS-rGbhyCj-kypnHsPn3a8MJZH4ZfMc1j3fk-novTlrvoL_5yLXb3d6_VY7Z9fthUt9ssEBRL5sAb17ZKca1rCSXrpiYjHWGpEQilkXUpmZhs46VDC0orC8QerUOj5VpcH3Ynjo67dubBhbif5tDz_LVHU5AsSf24q4ML3vv_-vCI_AbwblEN</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Admane, L.</creator><creator>Benatchba, K.</creator><creator>Koudil, M.</creator><creator>Drias, M.</creator><creator>Gharout, S.</creator><creator>Hamani, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Using ant colonies to solve data-mining problems</title><author>Admane, L. ; Benatchba, K. ; Koudil, M. ; Drias, M. ; Gharout, S. ; Hamani, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i205t-c0e7cff44ab6b309a6db273c21961021373b93a2a28de3c180464802ae18c1763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Ant colony optimization</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Data mining</topic><topic>Data processing. List processing. Character string processing</topic><topic>Delta modulation</topic><topic>Diseases</topic><topic>Exact sciences and technology</topic><topic>Genetic algorithms</topic><topic>Marketing and sales</topic><topic>Medical diagnostic imaging</topic><topic>Memory organisation. Data processing</topic><topic>Meteorology</topic><topic>Software</topic><topic>Supervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Admane, L.</creatorcontrib><creatorcontrib>Benatchba, K.</creatorcontrib><creatorcontrib>Koudil, M.</creatorcontrib><creatorcontrib>Drias, M.</creatorcontrib><creatorcontrib>Gharout, S.</creatorcontrib><creatorcontrib>Hamani, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Admane, L.</au><au>Benatchba, K.</au><au>Koudil, M.</au><au>Drias, M.</au><au>Gharout, S.</au><au>Hamani, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using ant colonies to solve data-mining problems</atitle><btitle>2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583)</btitle><stitle>ICSMC</stitle><date>2004</date><risdate>2004</risdate><volume>4</volume><spage>3151</spage><epage>3157 vol.4</epage><pages>3151-3157 vol.4</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>0780385667</isbn><isbn>9780780385665</isbn><abstract>Data mining is a constantly growing area. More and more domains of the daily life take advantage of the available tools (medicine, trade, meteorology, ...). However, such tools are confronted to a particular problem: the great number of characteristics that qualify data samples. They are more or less victims of the abundance of information. Sat domain benefits from the appearance of powerful solvers that can process huge amounts of data in short times. This paper proposes to solve supervised learning problems expressed as Sat ones. This is done to take advantage of an existing environment that allows experimenting different heuristics, such as: tabu search, genetic algorithm, ant colonies, etc., in order to extract solutions that satisfy a maximum number of clauses (Max-Sat problem). Finally, the best solutions are back-translated into rules that are applied to the data sets in order to verify that they really satisfy a maximum number of instances in the original learning problem.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/ICSMC.2004.1400824</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1062-922X
ispartof 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), 2004, Vol.4, p.3151-3157 vol.4
issn 1062-922X
2577-1655
language eng
recordid cdi_ieee_primary_1400824
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Ant colony optimization
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Control theory. Systems
Data mining
Data processing. List processing. Character string processing
Delta modulation
Diseases
Exact sciences and technology
Genetic algorithms
Marketing and sales
Medical diagnostic imaging
Memory organisation. Data processing
Meteorology
Software
Supervised learning
title Using ant colonies to solve data-mining problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A39%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20ant%20colonies%20to%20solve%20data-mining%20problems&rft.btitle=2004%20IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics%20(IEEE%20Cat.%20No.04CH37583)&rft.au=Admane,%20L.&rft.date=2004&rft.volume=4&rft.spage=3151&rft.epage=3157%20vol.4&rft.pages=3151-3157%20vol.4&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=0780385667&rft.isbn_list=9780780385665&rft_id=info:doi/10.1109/ICSMC.2004.1400824&rft_dat=%3Cpascalfrancis_6IE%3E17523924%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1400824&rfr_iscdi=true