Using ant colonies to solve data-mining problems
Data mining is a constantly growing area. More and more domains of the daily life take advantage of the available tools (medicine, trade, meteorology, ...). However, such tools are confronted to a particular problem: the great number of characteristics that qualify data samples. They are more or les...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3157 vol.4 |
---|---|
container_issue | |
container_start_page | 3151 |
container_title | |
container_volume | 4 |
creator | Admane, L. Benatchba, K. Koudil, M. Drias, M. Gharout, S. Hamani, N. |
description | Data mining is a constantly growing area. More and more domains of the daily life take advantage of the available tools (medicine, trade, meteorology, ...). However, such tools are confronted to a particular problem: the great number of characteristics that qualify data samples. They are more or less victims of the abundance of information. Sat domain benefits from the appearance of powerful solvers that can process huge amounts of data in short times. This paper proposes to solve supervised learning problems expressed as Sat ones. This is done to take advantage of an existing environment that allows experimenting different heuristics, such as: tabu search, genetic algorithm, ant colonies, etc., in order to extract solutions that satisfy a maximum number of clauses (Max-Sat problem). Finally, the best solutions are back-translated into rules that are applied to the data sets in order to verify that they really satisfy a maximum number of instances in the original learning problem. |
doi_str_mv | 10.1109/ICSMC.2004.1400824 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_1400824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1400824</ieee_id><sourcerecordid>17523924</sourcerecordid><originalsourceid>FETCH-LOGICAL-i205t-c0e7cff44ab6b309a6db273c21961021373b93a2a28de3c180464802ae18c1763</originalsourceid><addsrcrecordid>eNpF0EtLxDAUBeDgA-yM_gHddOOy9d6bNEmXUnwMjLjQAXfDbZpKpC-aIvjvVUZwdRbn4yyOEJcIOSKUN5vq5anKCUDlqAAsqSORUGFMhroojsUKjAVpC63NiUgQNGUl0duZWMX4AUCg0CYCdjEM7ykPS-rGbhyCj-kypnHsPn3a8MJZH4ZfMc1j3fk-novTlrvoL_5yLXb3d6_VY7Z9fthUt9ssEBRL5sAb17ZKca1rCSXrpiYjHWGpEQilkXUpmZhs46VDC0orC8QerUOj5VpcH3Ynjo67dubBhbif5tDz_LVHU5AsSf24q4ML3vv_-vCI_AbwblEN</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using ant colonies to solve data-mining problems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Admane, L. ; Benatchba, K. ; Koudil, M. ; Drias, M. ; Gharout, S. ; Hamani, N.</creator><creatorcontrib>Admane, L. ; Benatchba, K. ; Koudil, M. ; Drias, M. ; Gharout, S. ; Hamani, N.</creatorcontrib><description>Data mining is a constantly growing area. More and more domains of the daily life take advantage of the available tools (medicine, trade, meteorology, ...). However, such tools are confronted to a particular problem: the great number of characteristics that qualify data samples. They are more or less victims of the abundance of information. Sat domain benefits from the appearance of powerful solvers that can process huge amounts of data in short times. This paper proposes to solve supervised learning problems expressed as Sat ones. This is done to take advantage of an existing environment that allows experimenting different heuristics, such as: tabu search, genetic algorithm, ant colonies, etc., in order to extract solutions that satisfy a maximum number of clauses (Max-Sat problem). Finally, the best solutions are back-translated into rules that are applied to the data sets in order to verify that they really satisfy a maximum number of instances in the original learning problem.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 0780385667</identifier><identifier>ISBN: 9780780385665</identifier><identifier>EISSN: 2577-1655</identifier><identifier>DOI: 10.1109/ICSMC.2004.1400824</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Ant colony optimization ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Control theory. Systems ; Data mining ; Data processing. List processing. Character string processing ; Delta modulation ; Diseases ; Exact sciences and technology ; Genetic algorithms ; Marketing and sales ; Medical diagnostic imaging ; Memory organisation. Data processing ; Meteorology ; Software ; Supervised learning</subject><ispartof>2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), 2004, Vol.4, p.3151-3157 vol.4</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1400824$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1400824$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17523924$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Admane, L.</creatorcontrib><creatorcontrib>Benatchba, K.</creatorcontrib><creatorcontrib>Koudil, M.</creatorcontrib><creatorcontrib>Drias, M.</creatorcontrib><creatorcontrib>Gharout, S.</creatorcontrib><creatorcontrib>Hamani, N.</creatorcontrib><title>Using ant colonies to solve data-mining problems</title><title>2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583)</title><addtitle>ICSMC</addtitle><description>Data mining is a constantly growing area. More and more domains of the daily life take advantage of the available tools (medicine, trade, meteorology, ...). However, such tools are confronted to a particular problem: the great number of characteristics that qualify data samples. They are more or less victims of the abundance of information. Sat domain benefits from the appearance of powerful solvers that can process huge amounts of data in short times. This paper proposes to solve supervised learning problems expressed as Sat ones. This is done to take advantage of an existing environment that allows experimenting different heuristics, such as: tabu search, genetic algorithm, ant colonies, etc., in order to extract solutions that satisfy a maximum number of clauses (Max-Sat problem). Finally, the best solutions are back-translated into rules that are applied to the data sets in order to verify that they really satisfy a maximum number of instances in the original learning problem.</description><subject>Ant colony optimization</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Data mining</subject><subject>Data processing. List processing. Character string processing</subject><subject>Delta modulation</subject><subject>Diseases</subject><subject>Exact sciences and technology</subject><subject>Genetic algorithms</subject><subject>Marketing and sales</subject><subject>Medical diagnostic imaging</subject><subject>Memory organisation. Data processing</subject><subject>Meteorology</subject><subject>Software</subject><subject>Supervised learning</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>0780385667</isbn><isbn>9780780385665</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpF0EtLxDAUBeDgA-yM_gHddOOy9d6bNEmXUnwMjLjQAXfDbZpKpC-aIvjvVUZwdRbn4yyOEJcIOSKUN5vq5anKCUDlqAAsqSORUGFMhroojsUKjAVpC63NiUgQNGUl0duZWMX4AUCg0CYCdjEM7ykPS-rGbhyCj-kypnHsPn3a8MJZH4ZfMc1j3fk-novTlrvoL_5yLXb3d6_VY7Z9fthUt9ssEBRL5sAb17ZKca1rCSXrpiYjHWGpEQilkXUpmZhs46VDC0orC8QerUOj5VpcH3Ynjo67dubBhbif5tDz_LVHU5AsSf24q4ML3vv_-vCI_AbwblEN</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Admane, L.</creator><creator>Benatchba, K.</creator><creator>Koudil, M.</creator><creator>Drias, M.</creator><creator>Gharout, S.</creator><creator>Hamani, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Using ant colonies to solve data-mining problems</title><author>Admane, L. ; Benatchba, K. ; Koudil, M. ; Drias, M. ; Gharout, S. ; Hamani, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i205t-c0e7cff44ab6b309a6db273c21961021373b93a2a28de3c180464802ae18c1763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Ant colony optimization</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Data mining</topic><topic>Data processing. List processing. Character string processing</topic><topic>Delta modulation</topic><topic>Diseases</topic><topic>Exact sciences and technology</topic><topic>Genetic algorithms</topic><topic>Marketing and sales</topic><topic>Medical diagnostic imaging</topic><topic>Memory organisation. Data processing</topic><topic>Meteorology</topic><topic>Software</topic><topic>Supervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Admane, L.</creatorcontrib><creatorcontrib>Benatchba, K.</creatorcontrib><creatorcontrib>Koudil, M.</creatorcontrib><creatorcontrib>Drias, M.</creatorcontrib><creatorcontrib>Gharout, S.</creatorcontrib><creatorcontrib>Hamani, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Admane, L.</au><au>Benatchba, K.</au><au>Koudil, M.</au><au>Drias, M.</au><au>Gharout, S.</au><au>Hamani, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using ant colonies to solve data-mining problems</atitle><btitle>2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583)</btitle><stitle>ICSMC</stitle><date>2004</date><risdate>2004</risdate><volume>4</volume><spage>3151</spage><epage>3157 vol.4</epage><pages>3151-3157 vol.4</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>0780385667</isbn><isbn>9780780385665</isbn><abstract>Data mining is a constantly growing area. More and more domains of the daily life take advantage of the available tools (medicine, trade, meteorology, ...). However, such tools are confronted to a particular problem: the great number of characteristics that qualify data samples. They are more or less victims of the abundance of information. Sat domain benefits from the appearance of powerful solvers that can process huge amounts of data in short times. This paper proposes to solve supervised learning problems expressed as Sat ones. This is done to take advantage of an existing environment that allows experimenting different heuristics, such as: tabu search, genetic algorithm, ant colonies, etc., in order to extract solutions that satisfy a maximum number of clauses (Max-Sat problem). Finally, the best solutions are back-translated into rules that are applied to the data sets in order to verify that they really satisfy a maximum number of instances in the original learning problem.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/ICSMC.2004.1400824</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1062-922X |
ispartof | 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), 2004, Vol.4, p.3151-3157 vol.4 |
issn | 1062-922X 2577-1655 |
language | eng |
recordid | cdi_ieee_primary_1400824 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Ant colony optimization Applied sciences Artificial intelligence Computer science control theory systems Control theory. Systems Data mining Data processing. List processing. Character string processing Delta modulation Diseases Exact sciences and technology Genetic algorithms Marketing and sales Medical diagnostic imaging Memory organisation. Data processing Meteorology Software Supervised learning |
title | Using ant colonies to solve data-mining problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A39%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20ant%20colonies%20to%20solve%20data-mining%20problems&rft.btitle=2004%20IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics%20(IEEE%20Cat.%20No.04CH37583)&rft.au=Admane,%20L.&rft.date=2004&rft.volume=4&rft.spage=3151&rft.epage=3157%20vol.4&rft.pages=3151-3157%20vol.4&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=0780385667&rft.isbn_list=9780780385665&rft_id=info:doi/10.1109/ICSMC.2004.1400824&rft_dat=%3Cpascalfrancis_6IE%3E17523924%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1400824&rfr_iscdi=true |