A fuzzy c-means (FCM) based algorithm for intensity inhomogeneity correction and segmentation of MR images
Magnetic resonance images are often corrupted by intensity inhomogeneity, which manifests itself as slow intensity variations of the same tissue over the image domain. Such shading artifacts must be corrected before doing computerized analysis such as intensity-based segmentation and quantitative an...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1310 Vol. 2 |
---|---|
container_issue | |
container_start_page | 1307 |
container_title | |
container_volume | |
creator | Chen, W. Giger, M.L. |
description | Magnetic resonance images are often corrupted by intensity inhomogeneity, which manifests itself as slow intensity variations of the same tissue over the image domain. Such shading artifacts must be corrected before doing computerized analysis such as intensity-based segmentation and quantitative analysis. In this paper, we present a fuzzy c-means (FCM) based algorithm that simultaneously estimates the shading effect while segmenting the image. A multiplier field term that models the intensity variation is incorporated into the FCM objective function which is minimized iteratively. In each iteration, the bias field is estimated based on the current tissue class centroids and the membership values of the voxels and then smoothed by an iterative low-pass filter. The efficacy of the algorithm is demonstrated on clinical breast MR images. |
doi_str_mv | 10.1109/ISBI.2004.1398786 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1398786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1398786</ieee_id><sourcerecordid>1398786</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5aa34de7fd1a1db47045613feb530dc19ac0cc89030906860d163063a774e5423</originalsourceid><addsrcrecordid>eNotUMtOAjEUbWJMVOQDjJsudTF4y50-ZolElARi4mNNSntnKGFaMx0X8PWicjbnsTgnOYzdCBgJAdXD_P1xPhoDlCOBldFGnbEr0AbQoDHygg1z3sIRWKGS6pJtJ7z-Phz23BUt2Zj53Wy6vOdrm8lzu2tSF_pNy-vU8RB7ijn0-6PapDY1FOnXudR15PqQIrfR80xNS7G3f0Gq-fKNh9Y2lK_ZeW13mYYnHrDP2dPH9KVYvD7Pp5NFEYSWfSGtxdKTrr2wwq9LDaVUAmtaSwTvRGUdOGcqQKhAGQVeKASFVuuSZDnGAbv97w1EtPrqjuvdfnW6A38AlyFWFw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A fuzzy c-means (FCM) based algorithm for intensity inhomogeneity correction and segmentation of MR images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chen, W. ; Giger, M.L.</creator><creatorcontrib>Chen, W. ; Giger, M.L.</creatorcontrib><description>Magnetic resonance images are often corrupted by intensity inhomogeneity, which manifests itself as slow intensity variations of the same tissue over the image domain. Such shading artifacts must be corrected before doing computerized analysis such as intensity-based segmentation and quantitative analysis. In this paper, we present a fuzzy c-means (FCM) based algorithm that simultaneously estimates the shading effect while segmenting the image. A multiplier field term that models the intensity variation is incorporated into the FCM objective function which is minimized iteratively. In each iteration, the bias field is estimated based on the current tissue class centroids and the membership values of the voxels and then smoothed by an iterative low-pass filter. The efficacy of the algorithm is demonstrated on clinical breast MR images.</description><identifier>ISBN: 0780383885</identifier><identifier>ISBN: 9780780383883</identifier><identifier>DOI: 10.1109/ISBI.2004.1398786</identifier><language>eng</language><publisher>IEEE</publisher><subject>Breast cancer ; High-resolution imaging ; Image segmentation ; Iterative algorithms ; Low pass filters ; Magnetic analysis ; Magnetic resonance ; Magnetic resonance imaging ; Magnetic separation ; Radiology</subject><ispartof>2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821), 2004, p.1307-1310 Vol. 2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1398786$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1398786$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, W.</creatorcontrib><creatorcontrib>Giger, M.L.</creatorcontrib><title>A fuzzy c-means (FCM) based algorithm for intensity inhomogeneity correction and segmentation of MR images</title><title>2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821)</title><addtitle>ISBI</addtitle><description>Magnetic resonance images are often corrupted by intensity inhomogeneity, which manifests itself as slow intensity variations of the same tissue over the image domain. Such shading artifacts must be corrected before doing computerized analysis such as intensity-based segmentation and quantitative analysis. In this paper, we present a fuzzy c-means (FCM) based algorithm that simultaneously estimates the shading effect while segmenting the image. A multiplier field term that models the intensity variation is incorporated into the FCM objective function which is minimized iteratively. In each iteration, the bias field is estimated based on the current tissue class centroids and the membership values of the voxels and then smoothed by an iterative low-pass filter. The efficacy of the algorithm is demonstrated on clinical breast MR images.</description><subject>Breast cancer</subject><subject>High-resolution imaging</subject><subject>Image segmentation</subject><subject>Iterative algorithms</subject><subject>Low pass filters</subject><subject>Magnetic analysis</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic separation</subject><subject>Radiology</subject><isbn>0780383885</isbn><isbn>9780780383883</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUMtOAjEUbWJMVOQDjJsudTF4y50-ZolElARi4mNNSntnKGFaMx0X8PWicjbnsTgnOYzdCBgJAdXD_P1xPhoDlCOBldFGnbEr0AbQoDHygg1z3sIRWKGS6pJtJ7z-Phz23BUt2Zj53Wy6vOdrm8lzu2tSF_pNy-vU8RB7ijn0-6PapDY1FOnXudR15PqQIrfR80xNS7G3f0Gq-fKNh9Y2lK_ZeW13mYYnHrDP2dPH9KVYvD7Pp5NFEYSWfSGtxdKTrr2wwq9LDaVUAmtaSwTvRGUdOGcqQKhAGQVeKASFVuuSZDnGAbv97w1EtPrqjuvdfnW6A38AlyFWFw</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Chen, W.</creator><creator>Giger, M.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>A fuzzy c-means (FCM) based algorithm for intensity inhomogeneity correction and segmentation of MR images</title><author>Chen, W. ; Giger, M.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5aa34de7fd1a1db47045613feb530dc19ac0cc89030906860d163063a774e5423</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Breast cancer</topic><topic>High-resolution imaging</topic><topic>Image segmentation</topic><topic>Iterative algorithms</topic><topic>Low pass filters</topic><topic>Magnetic analysis</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic separation</topic><topic>Radiology</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, W.</creatorcontrib><creatorcontrib>Giger, M.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, W.</au><au>Giger, M.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A fuzzy c-means (FCM) based algorithm for intensity inhomogeneity correction and segmentation of MR images</atitle><btitle>2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821)</btitle><stitle>ISBI</stitle><date>2004</date><risdate>2004</risdate><spage>1307</spage><epage>1310 Vol. 2</epage><pages>1307-1310 Vol. 2</pages><isbn>0780383885</isbn><isbn>9780780383883</isbn><abstract>Magnetic resonance images are often corrupted by intensity inhomogeneity, which manifests itself as slow intensity variations of the same tissue over the image domain. Such shading artifacts must be corrected before doing computerized analysis such as intensity-based segmentation and quantitative analysis. In this paper, we present a fuzzy c-means (FCM) based algorithm that simultaneously estimates the shading effect while segmenting the image. A multiplier field term that models the intensity variation is incorporated into the FCM objective function which is minimized iteratively. In each iteration, the bias field is estimated based on the current tissue class centroids and the membership values of the voxels and then smoothed by an iterative low-pass filter. The efficacy of the algorithm is demonstrated on clinical breast MR images.</abstract><pub>IEEE</pub><doi>10.1109/ISBI.2004.1398786</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780383885 |
ispartof | 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821), 2004, p.1307-1310 Vol. 2 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1398786 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Breast cancer High-resolution imaging Image segmentation Iterative algorithms Low pass filters Magnetic analysis Magnetic resonance Magnetic resonance imaging Magnetic separation Radiology |
title | A fuzzy c-means (FCM) based algorithm for intensity inhomogeneity correction and segmentation of MR images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A07%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20fuzzy%20c-means%20(FCM)%20based%20algorithm%20for%20intensity%20inhomogeneity%20correction%20and%20segmentation%20of%20MR%20images&rft.btitle=2004%202nd%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging:%20Nano%20to%20Macro%20(IEEE%20Cat%20No.%2004EX821)&rft.au=Chen,%20W.&rft.date=2004&rft.spage=1307&rft.epage=1310%20Vol.%202&rft.pages=1307-1310%20Vol.%202&rft.isbn=0780383885&rft.isbn_list=9780780383883&rft_id=info:doi/10.1109/ISBI.2004.1398786&rft_dat=%3Cieee_6IE%3E1398786%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1398786&rfr_iscdi=true |