Analysis of spatial-temporal regularization methods for linear inverse problems from a common statistical framework

In some medical imaging problems, the quantity to image is time-varying but related to the measurements by spatial dynamics only. Traditional methods solve the associated inverse problem separately at each time instant. Several recent reports take advantage of prior knowledge and/or measurement temp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yiheng Zhang, Ghodrati, A., Brooks, D.H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 775 Vol. 1
container_issue
container_start_page 772
container_title
container_volume
creator Yiheng Zhang
Ghodrati, A.
Brooks, D.H.
description In some medical imaging problems, the quantity to image is time-varying but related to the measurements by spatial dynamics only. Traditional methods solve the associated inverse problem separately at each time instant. Several recent reports take advantage of prior knowledge and/or measurement temporal behavior to solve jointly in space and time. In this paper we discuss three such approaches, which have been introduced in distinct mathematical contexts, from a common statistical regularization framework, and illuminate their relationships, advantages and disadvantages.
doi_str_mv 10.1109/ISBI.2004.1398652
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1398652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1398652</ieee_id><sourcerecordid>1398652</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-38a3ab2de236f16d3ed70b91f642bceaf45a495296e26c7eae72992c14621adb3</originalsourceid><addsrcrecordid>eNotkE1LxDAYhAMiqOv-APGSP9CajzZtjuviR2HBg3pe3rZvNJo0JYnK-ustuHMZmOGZwxByxVnJOdM33fNtVwrGqpJL3apanJAL1rRMtrJt6zOyTumDLZJaqlqdk7SZwB2STTQYmmbIFlyR0c8hgqMR374cRPu75GGiHvN7GBM1IVJnJ4RI7fSNMSGdY-gd-qWLwVOgQ_B-IVJeyJTtsIyZCB5_Qvy8JKcGXML10Vfk9f7uZftY7J4euu1mV1je1LmQLUjoxYhCKsPVKHFsWK-5UZXoBwRT1VDpWmiFQg0NAjZCazHwSgkOYy9X5Pp_1yLifo7WQzzsj7_IPwaiXHo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Analysis of spatial-temporal regularization methods for linear inverse problems from a common statistical framework</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yiheng Zhang ; Ghodrati, A. ; Brooks, D.H.</creator><creatorcontrib>Yiheng Zhang ; Ghodrati, A. ; Brooks, D.H.</creatorcontrib><description>In some medical imaging problems, the quantity to image is time-varying but related to the measurements by spatial dynamics only. Traditional methods solve the associated inverse problem separately at each time instant. Several recent reports take advantage of prior knowledge and/or measurement temporal behavior to solve jointly in space and time. In this paper we discuss three such approaches, which have been introduced in distinct mathematical contexts, from a common statistical regularization framework, and illuminate their relationships, advantages and disadvantages.</description><identifier>ISBN: 0780383885</identifier><identifier>ISBN: 9780780383883</identifier><identifier>DOI: 10.1109/ISBI.2004.1398652</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Biomedical measurements ; Covariance matrix ; Extraterrestrial measurements ; Image reconstruction ; Inverse problems ; Kalman filters ; Noise measurement ; Systems engineering and theory ; Time measurement</subject><ispartof>2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821), 2004, p.772-775 Vol. 1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1398652$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4047,4048,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1398652$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yiheng Zhang</creatorcontrib><creatorcontrib>Ghodrati, A.</creatorcontrib><creatorcontrib>Brooks, D.H.</creatorcontrib><title>Analysis of spatial-temporal regularization methods for linear inverse problems from a common statistical framework</title><title>2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821)</title><addtitle>ISBI</addtitle><description>In some medical imaging problems, the quantity to image is time-varying but related to the measurements by spatial dynamics only. Traditional methods solve the associated inverse problem separately at each time instant. Several recent reports take advantage of prior knowledge and/or measurement temporal behavior to solve jointly in space and time. In this paper we discuss three such approaches, which have been introduced in distinct mathematical contexts, from a common statistical regularization framework, and illuminate their relationships, advantages and disadvantages.</description><subject>Biomedical imaging</subject><subject>Biomedical measurements</subject><subject>Covariance matrix</subject><subject>Extraterrestrial measurements</subject><subject>Image reconstruction</subject><subject>Inverse problems</subject><subject>Kalman filters</subject><subject>Noise measurement</subject><subject>Systems engineering and theory</subject><subject>Time measurement</subject><isbn>0780383885</isbn><isbn>9780780383883</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkE1LxDAYhAMiqOv-APGSP9CajzZtjuviR2HBg3pe3rZvNJo0JYnK-ustuHMZmOGZwxByxVnJOdM33fNtVwrGqpJL3apanJAL1rRMtrJt6zOyTumDLZJaqlqdk7SZwB2STTQYmmbIFlyR0c8hgqMR374cRPu75GGiHvN7GBM1IVJnJ4RI7fSNMSGdY-gd-qWLwVOgQ_B-IVJeyJTtsIyZCB5_Qvy8JKcGXML10Vfk9f7uZftY7J4euu1mV1je1LmQLUjoxYhCKsPVKHFsWK-5UZXoBwRT1VDpWmiFQg0NAjZCazHwSgkOYy9X5Pp_1yLifo7WQzzsj7_IPwaiXHo</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Yiheng Zhang</creator><creator>Ghodrati, A.</creator><creator>Brooks, D.H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>Analysis of spatial-temporal regularization methods for linear inverse problems from a common statistical framework</title><author>Yiheng Zhang ; Ghodrati, A. ; Brooks, D.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-38a3ab2de236f16d3ed70b91f642bceaf45a495296e26c7eae72992c14621adb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Biomedical imaging</topic><topic>Biomedical measurements</topic><topic>Covariance matrix</topic><topic>Extraterrestrial measurements</topic><topic>Image reconstruction</topic><topic>Inverse problems</topic><topic>Kalman filters</topic><topic>Noise measurement</topic><topic>Systems engineering and theory</topic><topic>Time measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Yiheng Zhang</creatorcontrib><creatorcontrib>Ghodrati, A.</creatorcontrib><creatorcontrib>Brooks, D.H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yiheng Zhang</au><au>Ghodrati, A.</au><au>Brooks, D.H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Analysis of spatial-temporal regularization methods for linear inverse problems from a common statistical framework</atitle><btitle>2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821)</btitle><stitle>ISBI</stitle><date>2004</date><risdate>2004</risdate><spage>772</spage><epage>775 Vol. 1</epage><pages>772-775 Vol. 1</pages><isbn>0780383885</isbn><isbn>9780780383883</isbn><abstract>In some medical imaging problems, the quantity to image is time-varying but related to the measurements by spatial dynamics only. Traditional methods solve the associated inverse problem separately at each time instant. Several recent reports take advantage of prior knowledge and/or measurement temporal behavior to solve jointly in space and time. In this paper we discuss three such approaches, which have been introduced in distinct mathematical contexts, from a common statistical regularization framework, and illuminate their relationships, advantages and disadvantages.</abstract><pub>IEEE</pub><doi>10.1109/ISBI.2004.1398652</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780383885
ispartof 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821), 2004, p.772-775 Vol. 1
issn
language eng
recordid cdi_ieee_primary_1398652
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical imaging
Biomedical measurements
Covariance matrix
Extraterrestrial measurements
Image reconstruction
Inverse problems
Kalman filters
Noise measurement
Systems engineering and theory
Time measurement
title Analysis of spatial-temporal regularization methods for linear inverse problems from a common statistical framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Analysis%20of%20spatial-temporal%20regularization%20methods%20for%20linear%20inverse%20problems%20from%20a%20common%20statistical%20framework&rft.btitle=2004%202nd%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging:%20Nano%20to%20Macro%20(IEEE%20Cat%20No.%2004EX821)&rft.au=Yiheng%20Zhang&rft.date=2004&rft.spage=772&rft.epage=775%20Vol.%201&rft.pages=772-775%20Vol.%201&rft.isbn=0780383885&rft.isbn_list=9780780383883&rft_id=info:doi/10.1109/ISBI.2004.1398652&rft_dat=%3Cieee_6IE%3E1398652%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1398652&rfr_iscdi=true