Analysis of spatial-temporal regularization methods for linear inverse problems from a common statistical framework
In some medical imaging problems, the quantity to image is time-varying but related to the measurements by spatial dynamics only. Traditional methods solve the associated inverse problem separately at each time instant. Several recent reports take advantage of prior knowledge and/or measurement temp...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 775 Vol. 1 |
---|---|
container_issue | |
container_start_page | 772 |
container_title | |
container_volume | |
creator | Yiheng Zhang Ghodrati, A. Brooks, D.H. |
description | In some medical imaging problems, the quantity to image is time-varying but related to the measurements by spatial dynamics only. Traditional methods solve the associated inverse problem separately at each time instant. Several recent reports take advantage of prior knowledge and/or measurement temporal behavior to solve jointly in space and time. In this paper we discuss three such approaches, which have been introduced in distinct mathematical contexts, from a common statistical regularization framework, and illuminate their relationships, advantages and disadvantages. |
doi_str_mv | 10.1109/ISBI.2004.1398652 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1398652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1398652</ieee_id><sourcerecordid>1398652</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-38a3ab2de236f16d3ed70b91f642bceaf45a495296e26c7eae72992c14621adb3</originalsourceid><addsrcrecordid>eNotkE1LxDAYhAMiqOv-APGSP9CajzZtjuviR2HBg3pe3rZvNJo0JYnK-ustuHMZmOGZwxByxVnJOdM33fNtVwrGqpJL3apanJAL1rRMtrJt6zOyTumDLZJaqlqdk7SZwB2STTQYmmbIFlyR0c8hgqMR374cRPu75GGiHvN7GBM1IVJnJ4RI7fSNMSGdY-gd-qWLwVOgQ_B-IVJeyJTtsIyZCB5_Qvy8JKcGXML10Vfk9f7uZftY7J4euu1mV1je1LmQLUjoxYhCKsPVKHFsWK-5UZXoBwRT1VDpWmiFQg0NAjZCazHwSgkOYy9X5Pp_1yLifo7WQzzsj7_IPwaiXHo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Analysis of spatial-temporal regularization methods for linear inverse problems from a common statistical framework</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yiheng Zhang ; Ghodrati, A. ; Brooks, D.H.</creator><creatorcontrib>Yiheng Zhang ; Ghodrati, A. ; Brooks, D.H.</creatorcontrib><description>In some medical imaging problems, the quantity to image is time-varying but related to the measurements by spatial dynamics only. Traditional methods solve the associated inverse problem separately at each time instant. Several recent reports take advantage of prior knowledge and/or measurement temporal behavior to solve jointly in space and time. In this paper we discuss three such approaches, which have been introduced in distinct mathematical contexts, from a common statistical regularization framework, and illuminate their relationships, advantages and disadvantages.</description><identifier>ISBN: 0780383885</identifier><identifier>ISBN: 9780780383883</identifier><identifier>DOI: 10.1109/ISBI.2004.1398652</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Biomedical measurements ; Covariance matrix ; Extraterrestrial measurements ; Image reconstruction ; Inverse problems ; Kalman filters ; Noise measurement ; Systems engineering and theory ; Time measurement</subject><ispartof>2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821), 2004, p.772-775 Vol. 1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1398652$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4047,4048,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1398652$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yiheng Zhang</creatorcontrib><creatorcontrib>Ghodrati, A.</creatorcontrib><creatorcontrib>Brooks, D.H.</creatorcontrib><title>Analysis of spatial-temporal regularization methods for linear inverse problems from a common statistical framework</title><title>2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821)</title><addtitle>ISBI</addtitle><description>In some medical imaging problems, the quantity to image is time-varying but related to the measurements by spatial dynamics only. Traditional methods solve the associated inverse problem separately at each time instant. Several recent reports take advantage of prior knowledge and/or measurement temporal behavior to solve jointly in space and time. In this paper we discuss three such approaches, which have been introduced in distinct mathematical contexts, from a common statistical regularization framework, and illuminate their relationships, advantages and disadvantages.</description><subject>Biomedical imaging</subject><subject>Biomedical measurements</subject><subject>Covariance matrix</subject><subject>Extraterrestrial measurements</subject><subject>Image reconstruction</subject><subject>Inverse problems</subject><subject>Kalman filters</subject><subject>Noise measurement</subject><subject>Systems engineering and theory</subject><subject>Time measurement</subject><isbn>0780383885</isbn><isbn>9780780383883</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkE1LxDAYhAMiqOv-APGSP9CajzZtjuviR2HBg3pe3rZvNJo0JYnK-ustuHMZmOGZwxByxVnJOdM33fNtVwrGqpJL3apanJAL1rRMtrJt6zOyTumDLZJaqlqdk7SZwB2STTQYmmbIFlyR0c8hgqMR374cRPu75GGiHvN7GBM1IVJnJ4RI7fSNMSGdY-gd-qWLwVOgQ_B-IVJeyJTtsIyZCB5_Qvy8JKcGXML10Vfk9f7uZftY7J4euu1mV1je1LmQLUjoxYhCKsPVKHFsWK-5UZXoBwRT1VDpWmiFQg0NAjZCazHwSgkOYy9X5Pp_1yLifo7WQzzsj7_IPwaiXHo</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Yiheng Zhang</creator><creator>Ghodrati, A.</creator><creator>Brooks, D.H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>Analysis of spatial-temporal regularization methods for linear inverse problems from a common statistical framework</title><author>Yiheng Zhang ; Ghodrati, A. ; Brooks, D.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-38a3ab2de236f16d3ed70b91f642bceaf45a495296e26c7eae72992c14621adb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Biomedical imaging</topic><topic>Biomedical measurements</topic><topic>Covariance matrix</topic><topic>Extraterrestrial measurements</topic><topic>Image reconstruction</topic><topic>Inverse problems</topic><topic>Kalman filters</topic><topic>Noise measurement</topic><topic>Systems engineering and theory</topic><topic>Time measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Yiheng Zhang</creatorcontrib><creatorcontrib>Ghodrati, A.</creatorcontrib><creatorcontrib>Brooks, D.H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yiheng Zhang</au><au>Ghodrati, A.</au><au>Brooks, D.H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Analysis of spatial-temporal regularization methods for linear inverse problems from a common statistical framework</atitle><btitle>2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821)</btitle><stitle>ISBI</stitle><date>2004</date><risdate>2004</risdate><spage>772</spage><epage>775 Vol. 1</epage><pages>772-775 Vol. 1</pages><isbn>0780383885</isbn><isbn>9780780383883</isbn><abstract>In some medical imaging problems, the quantity to image is time-varying but related to the measurements by spatial dynamics only. Traditional methods solve the associated inverse problem separately at each time instant. Several recent reports take advantage of prior knowledge and/or measurement temporal behavior to solve jointly in space and time. In this paper we discuss three such approaches, which have been introduced in distinct mathematical contexts, from a common statistical regularization framework, and illuminate their relationships, advantages and disadvantages.</abstract><pub>IEEE</pub><doi>10.1109/ISBI.2004.1398652</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780383885 |
ispartof | 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821), 2004, p.772-775 Vol. 1 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1398652 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biomedical imaging Biomedical measurements Covariance matrix Extraterrestrial measurements Image reconstruction Inverse problems Kalman filters Noise measurement Systems engineering and theory Time measurement |
title | Analysis of spatial-temporal regularization methods for linear inverse problems from a common statistical framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Analysis%20of%20spatial-temporal%20regularization%20methods%20for%20linear%20inverse%20problems%20from%20a%20common%20statistical%20framework&rft.btitle=2004%202nd%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging:%20Nano%20to%20Macro%20(IEEE%20Cat%20No.%2004EX821)&rft.au=Yiheng%20Zhang&rft.date=2004&rft.spage=772&rft.epage=775%20Vol.%201&rft.pages=772-775%20Vol.%201&rft.isbn=0780383885&rft.isbn_list=9780780383883&rft_id=info:doi/10.1109/ISBI.2004.1398652&rft_dat=%3Cieee_6IE%3E1398652%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1398652&rfr_iscdi=true |