Long-range spatiotemporal motion understanding using spatiotemporal flow curves

A spatiotemporal (ST) image cube, created by stacking a temporally dense sequence of images together, is a temporally coherent data representation. Using ST surface flow, i.e., the extension of optical flow to ST surfaces, it is shown how ST flow curves can be recovered and then used to detect group...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Allmen, M., Dyer, C.R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 309
container_issue
container_start_page 303
container_title
container_volume
creator Allmen, M.
Dyer, C.R.
description A spatiotemporal (ST) image cube, created by stacking a temporally dense sequence of images together, is a temporally coherent data representation. Using ST surface flow, i.e., the extension of optical flow to ST surfaces, it is shown how ST flow curves can be recovered and then used to detect groups of flow curves such that each group represents a single object or surface in the scene undergoing motion. The algorithm forms clusters of similar flow curves and is based on constraints called the temporal uniqueness constraints. First, a point in an image can only move to at most one point in the next image. Second, a point in an image can come from at most one point in the previous image. When these constraints are violated, or it appears that they are violated, occlusion or disocclusion has occurred and therefore can also be detected. Successful grouping of coherent regions of the ST cube for two gray-level image sequences is shown.< >
doi_str_mv 10.1109/CVPR.1991.139706
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_139706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>139706</ieee_id><sourcerecordid>139706</sourcerecordid><originalsourceid>FETCH-LOGICAL-i214t-4f2d058e50819e5256142742373bd129b10c4bef90c12e694c8dd3360e8f71c03</originalsourceid><addsrcrecordid>eNpdj09LxDAUxAMquLt6F0_9Aq3vJWnaHKX4Dworol6XtHktlTYtSav47a2sJy8zDAzDbxi7QkgQQd8U788vCWqNCQqdgTphW8gxVxxlrk7ZBkGJWGnU52wbwgcAFxmHDduXo2tjb1xLUZjM3I0zDdPoTR8N45pctDhLPszG2c610RJ-9V-z6cevqF78J4ULdtaYPtDln-_Y2_3da_EYl_uHp-K2jLuVaI5lwy2kOaUrpKaUpwolz-QKJSqLXFcItayo0VAjJ6VlnVsrhALKmwxrEDt2fdztiOgw-W4w_vtw_C5-ALq6TqY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Long-range spatiotemporal motion understanding using spatiotemporal flow curves</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Allmen, M. ; Dyer, C.R.</creator><creatorcontrib>Allmen, M. ; Dyer, C.R.</creatorcontrib><description>A spatiotemporal (ST) image cube, created by stacking a temporally dense sequence of images together, is a temporally coherent data representation. Using ST surface flow, i.e., the extension of optical flow to ST surfaces, it is shown how ST flow curves can be recovered and then used to detect groups of flow curves such that each group represents a single object or surface in the scene undergoing motion. The algorithm forms clusters of similar flow curves and is based on constraints called the temporal uniqueness constraints. First, a point in an image can only move to at most one point in the next image. Second, a point in an image can come from at most one point in the previous image. When these constraints are violated, or it appears that they are violated, occlusion or disocclusion has occurred and therefore can also be detected. Successful grouping of coherent regions of the ST cube for two gray-level image sequences is shown.&lt; &gt;</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 0818621486</identifier><identifier>ISBN: 9780818621482</identifier><identifier>DOI: 10.1109/CVPR.1991.139706</identifier><language>eng</language><publisher>IEEE Comput. Soc. Press</publisher><subject>Data flow computing ; Image edge detection ; Image motion analysis ; Image sequences ; Layout ; Object detection ; Optical computing ; Pixel ; Spatial coherence ; Spatiotemporal phenomena</subject><ispartof>Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1991, p.303-309</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/139706$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/139706$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Allmen, M.</creatorcontrib><creatorcontrib>Dyer, C.R.</creatorcontrib><title>Long-range spatiotemporal motion understanding using spatiotemporal flow curves</title><title>Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>A spatiotemporal (ST) image cube, created by stacking a temporally dense sequence of images together, is a temporally coherent data representation. Using ST surface flow, i.e., the extension of optical flow to ST surfaces, it is shown how ST flow curves can be recovered and then used to detect groups of flow curves such that each group represents a single object or surface in the scene undergoing motion. The algorithm forms clusters of similar flow curves and is based on constraints called the temporal uniqueness constraints. First, a point in an image can only move to at most one point in the next image. Second, a point in an image can come from at most one point in the previous image. When these constraints are violated, or it appears that they are violated, occlusion or disocclusion has occurred and therefore can also be detected. Successful grouping of coherent regions of the ST cube for two gray-level image sequences is shown.&lt; &gt;</description><subject>Data flow computing</subject><subject>Image edge detection</subject><subject>Image motion analysis</subject><subject>Image sequences</subject><subject>Layout</subject><subject>Object detection</subject><subject>Optical computing</subject><subject>Pixel</subject><subject>Spatial coherence</subject><subject>Spatiotemporal phenomena</subject><issn>1063-6919</issn><isbn>0818621486</isbn><isbn>9780818621482</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1991</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpdj09LxDAUxAMquLt6F0_9Aq3vJWnaHKX4Dworol6XtHktlTYtSav47a2sJy8zDAzDbxi7QkgQQd8U788vCWqNCQqdgTphW8gxVxxlrk7ZBkGJWGnU52wbwgcAFxmHDduXo2tjb1xLUZjM3I0zDdPoTR8N45pctDhLPszG2c610RJ-9V-z6cevqF78J4ULdtaYPtDln-_Y2_3da_EYl_uHp-K2jLuVaI5lwy2kOaUrpKaUpwolz-QKJSqLXFcItayo0VAjJ6VlnVsrhALKmwxrEDt2fdztiOgw-W4w_vtw_C5-ALq6TqY</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>Allmen, M.</creator><creator>Dyer, C.R.</creator><general>IEEE Comput. Soc. Press</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1991</creationdate><title>Long-range spatiotemporal motion understanding using spatiotemporal flow curves</title><author>Allmen, M. ; Dyer, C.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i214t-4f2d058e50819e5256142742373bd129b10c4bef90c12e694c8dd3360e8f71c03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Data flow computing</topic><topic>Image edge detection</topic><topic>Image motion analysis</topic><topic>Image sequences</topic><topic>Layout</topic><topic>Object detection</topic><topic>Optical computing</topic><topic>Pixel</topic><topic>Spatial coherence</topic><topic>Spatiotemporal phenomena</topic><toplevel>online_resources</toplevel><creatorcontrib>Allmen, M.</creatorcontrib><creatorcontrib>Dyer, C.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Allmen, M.</au><au>Dyer, C.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Long-range spatiotemporal motion understanding using spatiotemporal flow curves</atitle><btitle>Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>1991</date><risdate>1991</risdate><spage>303</spage><epage>309</epage><pages>303-309</pages><issn>1063-6919</issn><isbn>0818621486</isbn><isbn>9780818621482</isbn><abstract>A spatiotemporal (ST) image cube, created by stacking a temporally dense sequence of images together, is a temporally coherent data representation. Using ST surface flow, i.e., the extension of optical flow to ST surfaces, it is shown how ST flow curves can be recovered and then used to detect groups of flow curves such that each group represents a single object or surface in the scene undergoing motion. The algorithm forms clusters of similar flow curves and is based on constraints called the temporal uniqueness constraints. First, a point in an image can only move to at most one point in the next image. Second, a point in an image can come from at most one point in the previous image. When these constraints are violated, or it appears that they are violated, occlusion or disocclusion has occurred and therefore can also be detected. Successful grouping of coherent regions of the ST cube for two gray-level image sequences is shown.&lt; &gt;</abstract><pub>IEEE Comput. Soc. Press</pub><doi>10.1109/CVPR.1991.139706</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1991, p.303-309
issn 1063-6919
language eng
recordid cdi_ieee_primary_139706
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data flow computing
Image edge detection
Image motion analysis
Image sequences
Layout
Object detection
Optical computing
Pixel
Spatial coherence
Spatiotemporal phenomena
title Long-range spatiotemporal motion understanding using spatiotemporal flow curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Long-range%20spatiotemporal%20motion%20understanding%20using%20spatiotemporal%20flow%20curves&rft.btitle=Proceedings.%201991%20IEEE%20Computer%20Society%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Allmen,%20M.&rft.date=1991&rft.spage=303&rft.epage=309&rft.pages=303-309&rft.issn=1063-6919&rft.isbn=0818621486&rft.isbn_list=9780818621482&rft_id=info:doi/10.1109/CVPR.1991.139706&rft_dat=%3Cieee_6IE%3E139706%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=139706&rfr_iscdi=true