Long-range spatiotemporal motion understanding using spatiotemporal flow curves
A spatiotemporal (ST) image cube, created by stacking a temporally dense sequence of images together, is a temporally coherent data representation. Using ST surface flow, i.e., the extension of optical flow to ST surfaces, it is shown how ST flow curves can be recovered and then used to detect group...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 309 |
---|---|
container_issue | |
container_start_page | 303 |
container_title | |
container_volume | |
creator | Allmen, M. Dyer, C.R. |
description | A spatiotemporal (ST) image cube, created by stacking a temporally dense sequence of images together, is a temporally coherent data representation. Using ST surface flow, i.e., the extension of optical flow to ST surfaces, it is shown how ST flow curves can be recovered and then used to detect groups of flow curves such that each group represents a single object or surface in the scene undergoing motion. The algorithm forms clusters of similar flow curves and is based on constraints called the temporal uniqueness constraints. First, a point in an image can only move to at most one point in the next image. Second, a point in an image can come from at most one point in the previous image. When these constraints are violated, or it appears that they are violated, occlusion or disocclusion has occurred and therefore can also be detected. Successful grouping of coherent regions of the ST cube for two gray-level image sequences is shown.< > |
doi_str_mv | 10.1109/CVPR.1991.139706 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_139706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>139706</ieee_id><sourcerecordid>139706</sourcerecordid><originalsourceid>FETCH-LOGICAL-i214t-4f2d058e50819e5256142742373bd129b10c4bef90c12e694c8dd3360e8f71c03</originalsourceid><addsrcrecordid>eNpdj09LxDAUxAMquLt6F0_9Aq3vJWnaHKX4Dworol6XtHktlTYtSav47a2sJy8zDAzDbxi7QkgQQd8U788vCWqNCQqdgTphW8gxVxxlrk7ZBkGJWGnU52wbwgcAFxmHDduXo2tjb1xLUZjM3I0zDdPoTR8N45pctDhLPszG2c610RJ-9V-z6cevqF78J4ULdtaYPtDln-_Y2_3da_EYl_uHp-K2jLuVaI5lwy2kOaUrpKaUpwolz-QKJSqLXFcItayo0VAjJ6VlnVsrhALKmwxrEDt2fdztiOgw-W4w_vtw_C5-ALq6TqY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Long-range spatiotemporal motion understanding using spatiotemporal flow curves</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Allmen, M. ; Dyer, C.R.</creator><creatorcontrib>Allmen, M. ; Dyer, C.R.</creatorcontrib><description>A spatiotemporal (ST) image cube, created by stacking a temporally dense sequence of images together, is a temporally coherent data representation. Using ST surface flow, i.e., the extension of optical flow to ST surfaces, it is shown how ST flow curves can be recovered and then used to detect groups of flow curves such that each group represents a single object or surface in the scene undergoing motion. The algorithm forms clusters of similar flow curves and is based on constraints called the temporal uniqueness constraints. First, a point in an image can only move to at most one point in the next image. Second, a point in an image can come from at most one point in the previous image. When these constraints are violated, or it appears that they are violated, occlusion or disocclusion has occurred and therefore can also be detected. Successful grouping of coherent regions of the ST cube for two gray-level image sequences is shown.< ></description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 0818621486</identifier><identifier>ISBN: 9780818621482</identifier><identifier>DOI: 10.1109/CVPR.1991.139706</identifier><language>eng</language><publisher>IEEE Comput. Soc. Press</publisher><subject>Data flow computing ; Image edge detection ; Image motion analysis ; Image sequences ; Layout ; Object detection ; Optical computing ; Pixel ; Spatial coherence ; Spatiotemporal phenomena</subject><ispartof>Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1991, p.303-309</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/139706$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/139706$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Allmen, M.</creatorcontrib><creatorcontrib>Dyer, C.R.</creatorcontrib><title>Long-range spatiotemporal motion understanding using spatiotemporal flow curves</title><title>Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>A spatiotemporal (ST) image cube, created by stacking a temporally dense sequence of images together, is a temporally coherent data representation. Using ST surface flow, i.e., the extension of optical flow to ST surfaces, it is shown how ST flow curves can be recovered and then used to detect groups of flow curves such that each group represents a single object or surface in the scene undergoing motion. The algorithm forms clusters of similar flow curves and is based on constraints called the temporal uniqueness constraints. First, a point in an image can only move to at most one point in the next image. Second, a point in an image can come from at most one point in the previous image. When these constraints are violated, or it appears that they are violated, occlusion or disocclusion has occurred and therefore can also be detected. Successful grouping of coherent regions of the ST cube for two gray-level image sequences is shown.< ></description><subject>Data flow computing</subject><subject>Image edge detection</subject><subject>Image motion analysis</subject><subject>Image sequences</subject><subject>Layout</subject><subject>Object detection</subject><subject>Optical computing</subject><subject>Pixel</subject><subject>Spatial coherence</subject><subject>Spatiotemporal phenomena</subject><issn>1063-6919</issn><isbn>0818621486</isbn><isbn>9780818621482</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1991</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpdj09LxDAUxAMquLt6F0_9Aq3vJWnaHKX4Dworol6XtHktlTYtSav47a2sJy8zDAzDbxi7QkgQQd8U788vCWqNCQqdgTphW8gxVxxlrk7ZBkGJWGnU52wbwgcAFxmHDduXo2tjb1xLUZjM3I0zDdPoTR8N45pctDhLPszG2c610RJ-9V-z6cevqF78J4ULdtaYPtDln-_Y2_3da_EYl_uHp-K2jLuVaI5lwy2kOaUrpKaUpwolz-QKJSqLXFcItayo0VAjJ6VlnVsrhALKmwxrEDt2fdztiOgw-W4w_vtw_C5-ALq6TqY</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>Allmen, M.</creator><creator>Dyer, C.R.</creator><general>IEEE Comput. Soc. Press</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1991</creationdate><title>Long-range spatiotemporal motion understanding using spatiotemporal flow curves</title><author>Allmen, M. ; Dyer, C.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i214t-4f2d058e50819e5256142742373bd129b10c4bef90c12e694c8dd3360e8f71c03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Data flow computing</topic><topic>Image edge detection</topic><topic>Image motion analysis</topic><topic>Image sequences</topic><topic>Layout</topic><topic>Object detection</topic><topic>Optical computing</topic><topic>Pixel</topic><topic>Spatial coherence</topic><topic>Spatiotemporal phenomena</topic><toplevel>online_resources</toplevel><creatorcontrib>Allmen, M.</creatorcontrib><creatorcontrib>Dyer, C.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Allmen, M.</au><au>Dyer, C.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Long-range spatiotemporal motion understanding using spatiotemporal flow curves</atitle><btitle>Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>1991</date><risdate>1991</risdate><spage>303</spage><epage>309</epage><pages>303-309</pages><issn>1063-6919</issn><isbn>0818621486</isbn><isbn>9780818621482</isbn><abstract>A spatiotemporal (ST) image cube, created by stacking a temporally dense sequence of images together, is a temporally coherent data representation. Using ST surface flow, i.e., the extension of optical flow to ST surfaces, it is shown how ST flow curves can be recovered and then used to detect groups of flow curves such that each group represents a single object or surface in the scene undergoing motion. The algorithm forms clusters of similar flow curves and is based on constraints called the temporal uniqueness constraints. First, a point in an image can only move to at most one point in the next image. Second, a point in an image can come from at most one point in the previous image. When these constraints are violated, or it appears that they are violated, occlusion or disocclusion has occurred and therefore can also be detected. Successful grouping of coherent regions of the ST cube for two gray-level image sequences is shown.< ></abstract><pub>IEEE Comput. Soc. Press</pub><doi>10.1109/CVPR.1991.139706</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6919 |
ispartof | Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1991, p.303-309 |
issn | 1063-6919 |
language | eng |
recordid | cdi_ieee_primary_139706 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Data flow computing Image edge detection Image motion analysis Image sequences Layout Object detection Optical computing Pixel Spatial coherence Spatiotemporal phenomena |
title | Long-range spatiotemporal motion understanding using spatiotemporal flow curves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Long-range%20spatiotemporal%20motion%20understanding%20using%20spatiotemporal%20flow%20curves&rft.btitle=Proceedings.%201991%20IEEE%20Computer%20Society%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Allmen,%20M.&rft.date=1991&rft.spage=303&rft.epage=309&rft.pages=303-309&rft.issn=1063-6919&rft.isbn=0818621486&rft.isbn_list=9780818621482&rft_id=info:doi/10.1109/CVPR.1991.139706&rft_dat=%3Cieee_6IE%3E139706%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=139706&rfr_iscdi=true |