Phonemic recognition using a large hidden Markov model

The authors present a novel method for using the state sequence output of a large hidden Markov model as input to a phonemic recognition system. It thereby demonstrates that a significant amount of speech information is preserved in the most likely state sequences produced by such a model. Two diffe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 1992-06, Vol.40 (6), p.1590-1595
Hauptverfasser: Pepper, D.J., Clements, M.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1595
container_issue 6
container_start_page 1590
container_title IEEE transactions on signal processing
container_volume 40
creator Pepper, D.J.
Clements, M.A.
description The authors present a novel method for using the state sequence output of a large hidden Markov model as input to a phonemic recognition system. It thereby demonstrates that a significant amount of speech information is preserved in the most likely state sequences produced by such a model. Two different system formulations are presented, both achieving recognitions results equivalent to those achieved by other researchers when using systems with similar levels of complexity. The best system formulation achieved a 56.1% recognition rate with 10.8% insertions on a closed-set experiment and a 53.3% recognition rate with 11.8% insertions on a speaker-independent experiment using the TIMIT acoustic-phonetic database. this experiment used 80 male speakers for model training and a separate set of 24 male speakers for model testing.< >
doi_str_mv 10.1109/78.139269
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_139269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>139269</ieee_id><sourcerecordid>28536257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-3f612fb1203f26cc0a0d5faa6fc382bf2cfc345ad0572786699f6c3a812fdb953</originalsourceid><addsrcrecordid>eNpF0E1LAzEQBuAgCtbqwaunnAQPW_Ox-TpKsSpU9KDgLaTZSRvd3dSkFfz3rqzgaV6YZ-bwInROyYxSYq6VnlFumDQHaEJNTStSK3k4ZCJ4JbR6O0YnpbwTQuvayAmSz5vUQxc9zuDTuo-7mHq8L7FfY4dbl9eAN7FpoMePLn-kL9ylBtpTdBRcW-Dsb07R6-L2ZX5fLZ_uHuY3y8ozpXYVD5KysKKM8MCk98SRRgTnZPBcs1Vgfgi1cA0RiiktpTFBeu70cNWsjOBTdDn-3eb0uYeys10sHtrW9ZD2xTItuGRCDfBqhD6nUjIEu82xc_nbUmJ_m7FK27GZwV6MNgLAvxuXP7c2XY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28536257</pqid></control><display><type>article</type><title>Phonemic recognition using a large hidden Markov model</title><source>IEEE Electronic Library (IEL)</source><creator>Pepper, D.J. ; Clements, M.A.</creator><creatorcontrib>Pepper, D.J. ; Clements, M.A.</creatorcontrib><description>The authors present a novel method for using the state sequence output of a large hidden Markov model as input to a phonemic recognition system. It thereby demonstrates that a significant amount of speech information is preserved in the most likely state sequences produced by such a model. Two different system formulations are presented, both achieving recognitions results equivalent to those achieved by other researchers when using systems with similar levels of complexity. The best system formulation achieved a 56.1% recognition rate with 10.8% insertions on a closed-set experiment and a 53.3% recognition rate with 11.8% insertions on a speaker-independent experiment using the TIMIT acoustic-phonetic database. this experiment used 80 male speakers for model training and a separate set of 24 male speakers for model testing.&lt; &gt;</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.139269</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic signal detection ; Acoustic signal processing ; Array signal processing ; Degradation ; Delay effects ; Detectors ; Filters ; Hidden Markov models ; Oceans ; Signal processing</subject><ispartof>IEEE transactions on signal processing, 1992-06, Vol.40 (6), p.1590-1595</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-3f612fb1203f26cc0a0d5faa6fc382bf2cfc345ad0572786699f6c3a812fdb953</citedby><cites>FETCH-LOGICAL-c277t-3f612fb1203f26cc0a0d5faa6fc382bf2cfc345ad0572786699f6c3a812fdb953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/139269$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/139269$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pepper, D.J.</creatorcontrib><creatorcontrib>Clements, M.A.</creatorcontrib><title>Phonemic recognition using a large hidden Markov model</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The authors present a novel method for using the state sequence output of a large hidden Markov model as input to a phonemic recognition system. It thereby demonstrates that a significant amount of speech information is preserved in the most likely state sequences produced by such a model. Two different system formulations are presented, both achieving recognitions results equivalent to those achieved by other researchers when using systems with similar levels of complexity. The best system formulation achieved a 56.1% recognition rate with 10.8% insertions on a closed-set experiment and a 53.3% recognition rate with 11.8% insertions on a speaker-independent experiment using the TIMIT acoustic-phonetic database. this experiment used 80 male speakers for model training and a separate set of 24 male speakers for model testing.&lt; &gt;</description><subject>Acoustic signal detection</subject><subject>Acoustic signal processing</subject><subject>Array signal processing</subject><subject>Degradation</subject><subject>Delay effects</subject><subject>Detectors</subject><subject>Filters</subject><subject>Hidden Markov models</subject><subject>Oceans</subject><subject>Signal processing</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNpF0E1LAzEQBuAgCtbqwaunnAQPW_Ox-TpKsSpU9KDgLaTZSRvd3dSkFfz3rqzgaV6YZ-bwInROyYxSYq6VnlFumDQHaEJNTStSK3k4ZCJ4JbR6O0YnpbwTQuvayAmSz5vUQxc9zuDTuo-7mHq8L7FfY4dbl9eAN7FpoMePLn-kL9ylBtpTdBRcW-Dsb07R6-L2ZX5fLZ_uHuY3y8ozpXYVD5KysKKM8MCk98SRRgTnZPBcs1Vgfgi1cA0RiiktpTFBeu70cNWsjOBTdDn-3eb0uYeys10sHtrW9ZD2xTItuGRCDfBqhD6nUjIEu82xc_nbUmJ_m7FK27GZwV6MNgLAvxuXP7c2XY4</recordid><startdate>19920601</startdate><enddate>19920601</enddate><creator>Pepper, D.J.</creator><creator>Clements, M.A.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19920601</creationdate><title>Phonemic recognition using a large hidden Markov model</title><author>Pepper, D.J. ; Clements, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-3f612fb1203f26cc0a0d5faa6fc382bf2cfc345ad0572786699f6c3a812fdb953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Acoustic signal detection</topic><topic>Acoustic signal processing</topic><topic>Array signal processing</topic><topic>Degradation</topic><topic>Delay effects</topic><topic>Detectors</topic><topic>Filters</topic><topic>Hidden Markov models</topic><topic>Oceans</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pepper, D.J.</creatorcontrib><creatorcontrib>Clements, M.A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pepper, D.J.</au><au>Clements, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phonemic recognition using a large hidden Markov model</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>1992-06-01</date><risdate>1992</risdate><volume>40</volume><issue>6</issue><spage>1590</spage><epage>1595</epage><pages>1590-1595</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The authors present a novel method for using the state sequence output of a large hidden Markov model as input to a phonemic recognition system. It thereby demonstrates that a significant amount of speech information is preserved in the most likely state sequences produced by such a model. Two different system formulations are presented, both achieving recognitions results equivalent to those achieved by other researchers when using systems with similar levels of complexity. The best system formulation achieved a 56.1% recognition rate with 10.8% insertions on a closed-set experiment and a 53.3% recognition rate with 11.8% insertions on a speaker-independent experiment using the TIMIT acoustic-phonetic database. this experiment used 80 male speakers for model training and a separate set of 24 male speakers for model testing.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/78.139269</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 1992-06, Vol.40 (6), p.1590-1595
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_139269
source IEEE Electronic Library (IEL)
subjects Acoustic signal detection
Acoustic signal processing
Array signal processing
Degradation
Delay effects
Detectors
Filters
Hidden Markov models
Oceans
Signal processing
title Phonemic recognition using a large hidden Markov model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phonemic%20recognition%20using%20a%20large%20hidden%20Markov%20model&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Pepper,%20D.J.&rft.date=1992-06-01&rft.volume=40&rft.issue=6&rft.spage=1590&rft.epage=1595&rft.pages=1590-1595&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.139269&rft_dat=%3Cproquest_RIE%3E28536257%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28536257&rft_id=info:pmid/&rft_ieee_id=139269&rfr_iscdi=true