A microfabricated wall shear-stress sensor with capacitative sensing

A silicon-based micromachined, floating-element sensor for low-magnitude wall shear-stress measurement has been developed. Sensors over a range of element sizes and sensitivities have been fabricated by thin-wafer bonding and deep-reactive ion-etching techniques. Detailed design, fabrication, and te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2005-02, Vol.14 (1), p.167-175
Hauptverfasser: Jiang Zhe, Modi, V., Farmer, K.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue 1
container_start_page 167
container_title Journal of microelectromechanical systems
container_volume 14
creator Jiang Zhe
Modi, V.
Farmer, K.R.
description A silicon-based micromachined, floating-element sensor for low-magnitude wall shear-stress measurement has been developed. Sensors over a range of element sizes and sensitivities have been fabricated by thin-wafer bonding and deep-reactive ion-etching techniques. Detailed design, fabrication, and testing issues are described in this paper. Detection of the floating-element motion is accomplished using either direct or differential capacitance measurement. The design objective is to measure the shear-stress distribution at levels of O(0.10 Pa) with a spatial resolution of approximately O(100 /spl mu/m). It is assumed that the flow direction is known, permitting one to align the sensor appropriately so that a single component shear measurement is a good estimate of the prevalent shear. Using a differential capacitance detection scheme these goals have been achieved. We tested the sensor at shear levels ranging from 0 to 0.20 Pa and found that the lowest detectable shear-stress level that the sensor can measure is 0.04 Pa with an 8% uncertainty on a 200 /spl mu/m/spl times/500 /spl mu/m floating element plate.
doi_str_mv 10.1109/JMEMS.2004.839001
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1390948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1390948</ieee_id><sourcerecordid>2582095801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-8ac0dc3927b1993da96dd20668ef05c74ce2d9ee24ea1e190b2716d92a4b91123</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosouK7-APFSBMVL10yapMlR1m8UD-q5zKZTzdJt16Tr4r83WkHw4GkG5nlfmCdJ9oFNAJg5vb2_uH-ccMbEROeGMdhIRmAEZAyk3ow7k0VWgCy2k50Q5hEQQqtRcn6WLpz1XY0z7yz2VKVrbJo0vBL6LPSeQkgDtaHz6dr1r6nFJVrXY-_e6fvg2pfdZKvGJtDezxwnz5cXT9Pr7O7h6mZ6dpfZXKs-02hZZXPDixkYk1doVFVxppSmmklbCEu8MkRcEAKBYTNegKoMRzEzADwfJ8dD79J3bysKfblwwVLTYEvdKpRcM-AmZxE8-RcEBkZJIQoT0cM_6Lxb-Ta-URrOpBRKqAjBAEVTIXiqy6V3C_Qfsan88l9--y-__JeD_5g5-inGYLGpPbbWhd-gklBIJSJ3MHCOiH7PscQInX8CrNmNSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920554646</pqid></control><display><type>article</type><title>A microfabricated wall shear-stress sensor with capacitative sensing</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Jiang Zhe ; Modi, V. ; Farmer, K.R.</creator><creatorcontrib>Jiang Zhe ; Modi, V. ; Farmer, K.R.</creatorcontrib><description>A silicon-based micromachined, floating-element sensor for low-magnitude wall shear-stress measurement has been developed. Sensors over a range of element sizes and sensitivities have been fabricated by thin-wafer bonding and deep-reactive ion-etching techniques. Detailed design, fabrication, and testing issues are described in this paper. Detection of the floating-element motion is accomplished using either direct or differential capacitance measurement. The design objective is to measure the shear-stress distribution at levels of O(0.10 Pa) with a spatial resolution of approximately O(100 /spl mu/m). It is assumed that the flow direction is known, permitting one to align the sensor appropriately so that a single component shear measurement is a good estimate of the prevalent shear. Using a differential capacitance detection scheme these goals have been achieved. We tested the sensor at shear levels ranging from 0 to 0.20 Pa and found that the lowest detectable shear-stress level that the sensor can measure is 0.04 Pa with an 8% uncertainty on a 200 /spl mu/m/spl times/500 /spl mu/m floating element plate.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2004.839001</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Bonding ; Capacitance ; Capacitive sensing ; Capacitive sensors ; Design engineering ; Electrodes ; Exact sciences and technology ; Force sensors ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Mechanical instruments, equipment and techniques ; microfabrication ; Micromachining ; Micromechanical devices ; Micromechanical devices and systems ; Micromechanics ; microsensor ; Physics ; Semiconductor device measurement ; Sensors ; Shear ; Shear stress ; shear-stress measurement ; Stress ; Stress measurement ; Structural beams ; Testing ; Velocity measurement ; Walls</subject><ispartof>Journal of microelectromechanical systems, 2005-02, Vol.14 (1), p.167-175</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-8ac0dc3927b1993da96dd20668ef05c74ce2d9ee24ea1e190b2716d92a4b91123</citedby><cites>FETCH-LOGICAL-c386t-8ac0dc3927b1993da96dd20668ef05c74ce2d9ee24ea1e190b2716d92a4b91123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1390948$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1390948$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16517564$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang Zhe</creatorcontrib><creatorcontrib>Modi, V.</creatorcontrib><creatorcontrib>Farmer, K.R.</creatorcontrib><title>A microfabricated wall shear-stress sensor with capacitative sensing</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>A silicon-based micromachined, floating-element sensor for low-magnitude wall shear-stress measurement has been developed. Sensors over a range of element sizes and sensitivities have been fabricated by thin-wafer bonding and deep-reactive ion-etching techniques. Detailed design, fabrication, and testing issues are described in this paper. Detection of the floating-element motion is accomplished using either direct or differential capacitance measurement. The design objective is to measure the shear-stress distribution at levels of O(0.10 Pa) with a spatial resolution of approximately O(100 /spl mu/m). It is assumed that the flow direction is known, permitting one to align the sensor appropriately so that a single component shear measurement is a good estimate of the prevalent shear. Using a differential capacitance detection scheme these goals have been achieved. We tested the sensor at shear levels ranging from 0 to 0.20 Pa and found that the lowest detectable shear-stress level that the sensor can measure is 0.04 Pa with an 8% uncertainty on a 200 /spl mu/m/spl times/500 /spl mu/m floating element plate.</description><subject>Bonding</subject><subject>Capacitance</subject><subject>Capacitive sensing</subject><subject>Capacitive sensors</subject><subject>Design engineering</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>Force sensors</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>microfabrication</subject><subject>Micromachining</subject><subject>Micromechanical devices</subject><subject>Micromechanical devices and systems</subject><subject>Micromechanics</subject><subject>microsensor</subject><subject>Physics</subject><subject>Semiconductor device measurement</subject><subject>Sensors</subject><subject>Shear</subject><subject>Shear stress</subject><subject>shear-stress measurement</subject><subject>Stress</subject><subject>Stress measurement</subject><subject>Structural beams</subject><subject>Testing</subject><subject>Velocity measurement</subject><subject>Walls</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LxDAQhosouK7-APFSBMVL10yapMlR1m8UD-q5zKZTzdJt16Tr4r83WkHw4GkG5nlfmCdJ9oFNAJg5vb2_uH-ccMbEROeGMdhIRmAEZAyk3ow7k0VWgCy2k50Q5hEQQqtRcn6WLpz1XY0z7yz2VKVrbJo0vBL6LPSeQkgDtaHz6dr1r6nFJVrXY-_e6fvg2pfdZKvGJtDezxwnz5cXT9Pr7O7h6mZ6dpfZXKs-02hZZXPDixkYk1doVFVxppSmmklbCEu8MkRcEAKBYTNegKoMRzEzADwfJ8dD79J3bysKfblwwVLTYEvdKpRcM-AmZxE8-RcEBkZJIQoT0cM_6Lxb-Ta-URrOpBRKqAjBAEVTIXiqy6V3C_Qfsan88l9--y-__JeD_5g5-inGYLGpPbbWhd-gklBIJSJ3MHCOiH7PscQInX8CrNmNSA</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Jiang Zhe</creator><creator>Modi, V.</creator><creator>Farmer, K.R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20050201</creationdate><title>A microfabricated wall shear-stress sensor with capacitative sensing</title><author>Jiang Zhe ; Modi, V. ; Farmer, K.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-8ac0dc3927b1993da96dd20668ef05c74ce2d9ee24ea1e190b2716d92a4b91123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bonding</topic><topic>Capacitance</topic><topic>Capacitive sensing</topic><topic>Capacitive sensors</topic><topic>Design engineering</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>Force sensors</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>microfabrication</topic><topic>Micromachining</topic><topic>Micromechanical devices</topic><topic>Micromechanical devices and systems</topic><topic>Micromechanics</topic><topic>microsensor</topic><topic>Physics</topic><topic>Semiconductor device measurement</topic><topic>Sensors</topic><topic>Shear</topic><topic>Shear stress</topic><topic>shear-stress measurement</topic><topic>Stress</topic><topic>Stress measurement</topic><topic>Structural beams</topic><topic>Testing</topic><topic>Velocity measurement</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang Zhe</creatorcontrib><creatorcontrib>Modi, V.</creatorcontrib><creatorcontrib>Farmer, K.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiang Zhe</au><au>Modi, V.</au><au>Farmer, K.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A microfabricated wall shear-stress sensor with capacitative sensing</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2005-02-01</date><risdate>2005</risdate><volume>14</volume><issue>1</issue><spage>167</spage><epage>175</epage><pages>167-175</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>A silicon-based micromachined, floating-element sensor for low-magnitude wall shear-stress measurement has been developed. Sensors over a range of element sizes and sensitivities have been fabricated by thin-wafer bonding and deep-reactive ion-etching techniques. Detailed design, fabrication, and testing issues are described in this paper. Detection of the floating-element motion is accomplished using either direct or differential capacitance measurement. The design objective is to measure the shear-stress distribution at levels of O(0.10 Pa) with a spatial resolution of approximately O(100 /spl mu/m). It is assumed that the flow direction is known, permitting one to align the sensor appropriately so that a single component shear measurement is a good estimate of the prevalent shear. Using a differential capacitance detection scheme these goals have been achieved. We tested the sensor at shear levels ranging from 0 to 0.20 Pa and found that the lowest detectable shear-stress level that the sensor can measure is 0.04 Pa with an 8% uncertainty on a 200 /spl mu/m/spl times/500 /spl mu/m floating element plate.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2004.839001</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2005-02, Vol.14 (1), p.167-175
issn 1057-7157
1941-0158
language eng
recordid cdi_ieee_primary_1390948
source IEEE/IET Electronic Library (IEL)
subjects Bonding
Capacitance
Capacitive sensing
Capacitive sensors
Design engineering
Electrodes
Exact sciences and technology
Force sensors
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Mechanical instruments, equipment and techniques
microfabrication
Micromachining
Micromechanical devices
Micromechanical devices and systems
Micromechanics
microsensor
Physics
Semiconductor device measurement
Sensors
Shear
Shear stress
shear-stress measurement
Stress
Stress measurement
Structural beams
Testing
Velocity measurement
Walls
title A microfabricated wall shear-stress sensor with capacitative sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A33%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20microfabricated%20wall%20shear-stress%20sensor%20with%20capacitative%20sensing&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Jiang%20Zhe&rft.date=2005-02-01&rft.volume=14&rft.issue=1&rft.spage=167&rft.epage=175&rft.pages=167-175&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2004.839001&rft_dat=%3Cproquest_RIE%3E2582095801%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920554646&rft_id=info:pmid/&rft_ieee_id=1390948&rfr_iscdi=true