A microfabricated wall shear-stress sensor with capacitative sensing
A silicon-based micromachined, floating-element sensor for low-magnitude wall shear-stress measurement has been developed. Sensors over a range of element sizes and sensitivities have been fabricated by thin-wafer bonding and deep-reactive ion-etching techniques. Detailed design, fabrication, and te...
Gespeichert in:
Veröffentlicht in: | Journal of microelectromechanical systems 2005-02, Vol.14 (1), p.167-175 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 175 |
---|---|
container_issue | 1 |
container_start_page | 167 |
container_title | Journal of microelectromechanical systems |
container_volume | 14 |
creator | Jiang Zhe Modi, V. Farmer, K.R. |
description | A silicon-based micromachined, floating-element sensor for low-magnitude wall shear-stress measurement has been developed. Sensors over a range of element sizes and sensitivities have been fabricated by thin-wafer bonding and deep-reactive ion-etching techniques. Detailed design, fabrication, and testing issues are described in this paper. Detection of the floating-element motion is accomplished using either direct or differential capacitance measurement. The design objective is to measure the shear-stress distribution at levels of O(0.10 Pa) with a spatial resolution of approximately O(100 /spl mu/m). It is assumed that the flow direction is known, permitting one to align the sensor appropriately so that a single component shear measurement is a good estimate of the prevalent shear. Using a differential capacitance detection scheme these goals have been achieved. We tested the sensor at shear levels ranging from 0 to 0.20 Pa and found that the lowest detectable shear-stress level that the sensor can measure is 0.04 Pa with an 8% uncertainty on a 200 /spl mu/m/spl times/500 /spl mu/m floating element plate. |
doi_str_mv | 10.1109/JMEMS.2004.839001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1390948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1390948</ieee_id><sourcerecordid>2582095801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-8ac0dc3927b1993da96dd20668ef05c74ce2d9ee24ea1e190b2716d92a4b91123</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosouK7-APFSBMVL10yapMlR1m8UD-q5zKZTzdJt16Tr4r83WkHw4GkG5nlfmCdJ9oFNAJg5vb2_uH-ccMbEROeGMdhIRmAEZAyk3ow7k0VWgCy2k50Q5hEQQqtRcn6WLpz1XY0z7yz2VKVrbJo0vBL6LPSeQkgDtaHz6dr1r6nFJVrXY-_e6fvg2pfdZKvGJtDezxwnz5cXT9Pr7O7h6mZ6dpfZXKs-02hZZXPDixkYk1doVFVxppSmmklbCEu8MkRcEAKBYTNegKoMRzEzADwfJ8dD79J3bysKfblwwVLTYEvdKpRcM-AmZxE8-RcEBkZJIQoT0cM_6Lxb-Ta-URrOpBRKqAjBAEVTIXiqy6V3C_Qfsan88l9--y-__JeD_5g5-inGYLGpPbbWhd-gklBIJSJ3MHCOiH7PscQInX8CrNmNSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920554646</pqid></control><display><type>article</type><title>A microfabricated wall shear-stress sensor with capacitative sensing</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Jiang Zhe ; Modi, V. ; Farmer, K.R.</creator><creatorcontrib>Jiang Zhe ; Modi, V. ; Farmer, K.R.</creatorcontrib><description>A silicon-based micromachined, floating-element sensor for low-magnitude wall shear-stress measurement has been developed. Sensors over a range of element sizes and sensitivities have been fabricated by thin-wafer bonding and deep-reactive ion-etching techniques. Detailed design, fabrication, and testing issues are described in this paper. Detection of the floating-element motion is accomplished using either direct or differential capacitance measurement. The design objective is to measure the shear-stress distribution at levels of O(0.10 Pa) with a spatial resolution of approximately O(100 /spl mu/m). It is assumed that the flow direction is known, permitting one to align the sensor appropriately so that a single component shear measurement is a good estimate of the prevalent shear. Using a differential capacitance detection scheme these goals have been achieved. We tested the sensor at shear levels ranging from 0 to 0.20 Pa and found that the lowest detectable shear-stress level that the sensor can measure is 0.04 Pa with an 8% uncertainty on a 200 /spl mu/m/spl times/500 /spl mu/m floating element plate.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2004.839001</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Bonding ; Capacitance ; Capacitive sensing ; Capacitive sensors ; Design engineering ; Electrodes ; Exact sciences and technology ; Force sensors ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Mechanical instruments, equipment and techniques ; microfabrication ; Micromachining ; Micromechanical devices ; Micromechanical devices and systems ; Micromechanics ; microsensor ; Physics ; Semiconductor device measurement ; Sensors ; Shear ; Shear stress ; shear-stress measurement ; Stress ; Stress measurement ; Structural beams ; Testing ; Velocity measurement ; Walls</subject><ispartof>Journal of microelectromechanical systems, 2005-02, Vol.14 (1), p.167-175</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-8ac0dc3927b1993da96dd20668ef05c74ce2d9ee24ea1e190b2716d92a4b91123</citedby><cites>FETCH-LOGICAL-c386t-8ac0dc3927b1993da96dd20668ef05c74ce2d9ee24ea1e190b2716d92a4b91123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1390948$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1390948$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16517564$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang Zhe</creatorcontrib><creatorcontrib>Modi, V.</creatorcontrib><creatorcontrib>Farmer, K.R.</creatorcontrib><title>A microfabricated wall shear-stress sensor with capacitative sensing</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>A silicon-based micromachined, floating-element sensor for low-magnitude wall shear-stress measurement has been developed. Sensors over a range of element sizes and sensitivities have been fabricated by thin-wafer bonding and deep-reactive ion-etching techniques. Detailed design, fabrication, and testing issues are described in this paper. Detection of the floating-element motion is accomplished using either direct or differential capacitance measurement. The design objective is to measure the shear-stress distribution at levels of O(0.10 Pa) with a spatial resolution of approximately O(100 /spl mu/m). It is assumed that the flow direction is known, permitting one to align the sensor appropriately so that a single component shear measurement is a good estimate of the prevalent shear. Using a differential capacitance detection scheme these goals have been achieved. We tested the sensor at shear levels ranging from 0 to 0.20 Pa and found that the lowest detectable shear-stress level that the sensor can measure is 0.04 Pa with an 8% uncertainty on a 200 /spl mu/m/spl times/500 /spl mu/m floating element plate.</description><subject>Bonding</subject><subject>Capacitance</subject><subject>Capacitive sensing</subject><subject>Capacitive sensors</subject><subject>Design engineering</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>Force sensors</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>microfabrication</subject><subject>Micromachining</subject><subject>Micromechanical devices</subject><subject>Micromechanical devices and systems</subject><subject>Micromechanics</subject><subject>microsensor</subject><subject>Physics</subject><subject>Semiconductor device measurement</subject><subject>Sensors</subject><subject>Shear</subject><subject>Shear stress</subject><subject>shear-stress measurement</subject><subject>Stress</subject><subject>Stress measurement</subject><subject>Structural beams</subject><subject>Testing</subject><subject>Velocity measurement</subject><subject>Walls</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LxDAQhosouK7-APFSBMVL10yapMlR1m8UD-q5zKZTzdJt16Tr4r83WkHw4GkG5nlfmCdJ9oFNAJg5vb2_uH-ccMbEROeGMdhIRmAEZAyk3ow7k0VWgCy2k50Q5hEQQqtRcn6WLpz1XY0z7yz2VKVrbJo0vBL6LPSeQkgDtaHz6dr1r6nFJVrXY-_e6fvg2pfdZKvGJtDezxwnz5cXT9Pr7O7h6mZ6dpfZXKs-02hZZXPDixkYk1doVFVxppSmmklbCEu8MkRcEAKBYTNegKoMRzEzADwfJ8dD79J3bysKfblwwVLTYEvdKpRcM-AmZxE8-RcEBkZJIQoT0cM_6Lxb-Ta-URrOpBRKqAjBAEVTIXiqy6V3C_Qfsan88l9--y-__JeD_5g5-inGYLGpPbbWhd-gklBIJSJ3MHCOiH7PscQInX8CrNmNSA</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Jiang Zhe</creator><creator>Modi, V.</creator><creator>Farmer, K.R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20050201</creationdate><title>A microfabricated wall shear-stress sensor with capacitative sensing</title><author>Jiang Zhe ; Modi, V. ; Farmer, K.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-8ac0dc3927b1993da96dd20668ef05c74ce2d9ee24ea1e190b2716d92a4b91123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bonding</topic><topic>Capacitance</topic><topic>Capacitive sensing</topic><topic>Capacitive sensors</topic><topic>Design engineering</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>Force sensors</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>microfabrication</topic><topic>Micromachining</topic><topic>Micromechanical devices</topic><topic>Micromechanical devices and systems</topic><topic>Micromechanics</topic><topic>microsensor</topic><topic>Physics</topic><topic>Semiconductor device measurement</topic><topic>Sensors</topic><topic>Shear</topic><topic>Shear stress</topic><topic>shear-stress measurement</topic><topic>Stress</topic><topic>Stress measurement</topic><topic>Structural beams</topic><topic>Testing</topic><topic>Velocity measurement</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang Zhe</creatorcontrib><creatorcontrib>Modi, V.</creatorcontrib><creatorcontrib>Farmer, K.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiang Zhe</au><au>Modi, V.</au><au>Farmer, K.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A microfabricated wall shear-stress sensor with capacitative sensing</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2005-02-01</date><risdate>2005</risdate><volume>14</volume><issue>1</issue><spage>167</spage><epage>175</epage><pages>167-175</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>A silicon-based micromachined, floating-element sensor for low-magnitude wall shear-stress measurement has been developed. Sensors over a range of element sizes and sensitivities have been fabricated by thin-wafer bonding and deep-reactive ion-etching techniques. Detailed design, fabrication, and testing issues are described in this paper. Detection of the floating-element motion is accomplished using either direct or differential capacitance measurement. The design objective is to measure the shear-stress distribution at levels of O(0.10 Pa) with a spatial resolution of approximately O(100 /spl mu/m). It is assumed that the flow direction is known, permitting one to align the sensor appropriately so that a single component shear measurement is a good estimate of the prevalent shear. Using a differential capacitance detection scheme these goals have been achieved. We tested the sensor at shear levels ranging from 0 to 0.20 Pa and found that the lowest detectable shear-stress level that the sensor can measure is 0.04 Pa with an 8% uncertainty on a 200 /spl mu/m/spl times/500 /spl mu/m floating element plate.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2004.839001</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7157 |
ispartof | Journal of microelectromechanical systems, 2005-02, Vol.14 (1), p.167-175 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_ieee_primary_1390948 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Bonding Capacitance Capacitive sensing Capacitive sensors Design engineering Electrodes Exact sciences and technology Force sensors Instruments, apparatus, components and techniques common to several branches of physics and astronomy Mechanical instruments, equipment and techniques microfabrication Micromachining Micromechanical devices Micromechanical devices and systems Micromechanics microsensor Physics Semiconductor device measurement Sensors Shear Shear stress shear-stress measurement Stress Stress measurement Structural beams Testing Velocity measurement Walls |
title | A microfabricated wall shear-stress sensor with capacitative sensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A33%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20microfabricated%20wall%20shear-stress%20sensor%20with%20capacitative%20sensing&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Jiang%20Zhe&rft.date=2005-02-01&rft.volume=14&rft.issue=1&rft.spage=167&rft.epage=175&rft.pages=167-175&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2004.839001&rft_dat=%3Cproquest_RIE%3E2582095801%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920554646&rft_id=info:pmid/&rft_ieee_id=1390948&rfr_iscdi=true |