Biologically inspired visual landmark processing for simultaneous localization and mapping

This paper illustrates a method for finding useful visual landmarks for performing simultaneous localization and mapping (SLAM). The method is based loosely on biological principles, using layers of filtering and pooling to create learned templates that correspond to different views of the environme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Prasser, D.P., Wyeth, G.F., Milford, M.J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 735 vol.1
container_issue
container_start_page 730
container_title
container_volume 1
creator Prasser, D.P.
Wyeth, G.F.
Milford, M.J.
description This paper illustrates a method for finding useful visual landmarks for performing simultaneous localization and mapping (SLAM). The method is based loosely on biological principles, using layers of filtering and pooling to create learned templates that correspond to different views of the environment. Rather than using a set of landmarks and reporting range and bearing to the landmark, this system maps views to poses. The challenge is to produce a system that produces the same view for small changes in robot pose, but provides different views for larger changes in pose. The method has been developed to interface with the RatSLAM system, a biologically inspired method of SLAM. The paper describes the method of learning and recalling visual landmarks in detail, and shows the performance of the visual system in real robot tests.
doi_str_mv 10.1109/IROS.2004.1389439
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_1389439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1389439</ieee_id><sourcerecordid>18243461</sourcerecordid><originalsourceid>FETCH-LOGICAL-i120t-3d57be3924864d3faa979c99a6eee403251b1b9a3d9a26f47fd07fafb4186d243</originalsourceid><addsrcrecordid>eNpFkE9LxDAQxQMiKOt-APGSi8fWpEnT5qiLugsLC_65eFmmTbKMpk1pusL66Q1UcBiYw_u9x2MIueYs55zpu83L7jUvGJM5F7WWQp-Rpa5qllbUUonqgixj_GRphC4lV5fk4wGDDwdswfsTxT4OOFpDvzEewVMPvelg_KLDGFobI_YH6sJII3ZHP0FvwzFSH5IZf2DC0NNkoB0MQyKvyLkDH-3y7y7I-9Pj22qdbXfPm9X9NkNesCkTpqwaK3QhayWNcAC60q3WoKy1komi5A1vNAijoVBOVs6wyoFrJK-VKaRYkNs5d4CYmrgR-hbjfhgxVT_teZ0YqXjibmYOU_C_PH9K_AIieGBs</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Biologically inspired visual landmark processing for simultaneous localization and mapping</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Prasser, D.P. ; Wyeth, G.F. ; Milford, M.J.</creator><creatorcontrib>Prasser, D.P. ; Wyeth, G.F. ; Milford, M.J.</creatorcontrib><description>This paper illustrates a method for finding useful visual landmarks for performing simultaneous localization and mapping (SLAM). The method is based loosely on biological principles, using layers of filtering and pooling to create learned templates that correspond to different views of the environment. Rather than using a set of landmarks and reporting range and bearing to the landmark, this system maps views to poses. The challenge is to produce a system that produces the same view for small changes in robot pose, but provides different views for larger changes in pose. The method has been developed to interface with the RatSLAM system, a biologically inspired method of SLAM. The paper describes the method of learning and recalling visual landmarks in detail, and shows the performance of the visual system in real robot tests.</description><identifier>ISBN: 9780780384637</identifier><identifier>ISBN: 0780384636</identifier><identifier>DOI: 10.1109/IROS.2004.1389439</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Cameras ; Computer science; control theory; systems ; Computer vision ; Control theory. Systems ; Exact sciences and technology ; Histograms ; Information technology ; Layout ; Machine vision ; Mobile robots ; Pattern recognition. Digital image processing. Computational geometry ; Robot vision systems ; Robotics ; Simultaneous localization and mapping ; Visual system</subject><ispartof>2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), 2004, Vol.1, p.730-735 vol.1</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1389439$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1389439$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18243461$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Prasser, D.P.</creatorcontrib><creatorcontrib>Wyeth, G.F.</creatorcontrib><creatorcontrib>Milford, M.J.</creatorcontrib><title>Biologically inspired visual landmark processing for simultaneous localization and mapping</title><title>2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566)</title><addtitle>IROS</addtitle><description>This paper illustrates a method for finding useful visual landmarks for performing simultaneous localization and mapping (SLAM). The method is based loosely on biological principles, using layers of filtering and pooling to create learned templates that correspond to different views of the environment. Rather than using a set of landmarks and reporting range and bearing to the landmark, this system maps views to poses. The challenge is to produce a system that produces the same view for small changes in robot pose, but provides different views for larger changes in pose. The method has been developed to interface with the RatSLAM system, a biologically inspired method of SLAM. The paper describes the method of learning and recalling visual landmarks in detail, and shows the performance of the visual system in real robot tests.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Cameras</subject><subject>Computer science; control theory; systems</subject><subject>Computer vision</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Histograms</subject><subject>Information technology</subject><subject>Layout</subject><subject>Machine vision</subject><subject>Mobile robots</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Robot vision systems</subject><subject>Robotics</subject><subject>Simultaneous localization and mapping</subject><subject>Visual system</subject><isbn>9780780384637</isbn><isbn>0780384636</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkE9LxDAQxQMiKOt-APGSi8fWpEnT5qiLugsLC_65eFmmTbKMpk1pusL66Q1UcBiYw_u9x2MIueYs55zpu83L7jUvGJM5F7WWQp-Rpa5qllbUUonqgixj_GRphC4lV5fk4wGDDwdswfsTxT4OOFpDvzEewVMPvelg_KLDGFobI_YH6sJII3ZHP0FvwzFSH5IZf2DC0NNkoB0MQyKvyLkDH-3y7y7I-9Pj22qdbXfPm9X9NkNesCkTpqwaK3QhayWNcAC60q3WoKy1komi5A1vNAijoVBOVs6wyoFrJK-VKaRYkNs5d4CYmrgR-hbjfhgxVT_teZ0YqXjibmYOU_C_PH9K_AIieGBs</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Prasser, D.P.</creator><creator>Wyeth, G.F.</creator><creator>Milford, M.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Biologically inspired visual landmark processing for simultaneous localization and mapping</title><author>Prasser, D.P. ; Wyeth, G.F. ; Milford, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i120t-3d57be3924864d3faa979c99a6eee403251b1b9a3d9a26f47fd07fafb4186d243</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Cameras</topic><topic>Computer science; control theory; systems</topic><topic>Computer vision</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Histograms</topic><topic>Information technology</topic><topic>Layout</topic><topic>Machine vision</topic><topic>Mobile robots</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Robot vision systems</topic><topic>Robotics</topic><topic>Simultaneous localization and mapping</topic><topic>Visual system</topic><toplevel>online_resources</toplevel><creatorcontrib>Prasser, D.P.</creatorcontrib><creatorcontrib>Wyeth, G.F.</creatorcontrib><creatorcontrib>Milford, M.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Prasser, D.P.</au><au>Wyeth, G.F.</au><au>Milford, M.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Biologically inspired visual landmark processing for simultaneous localization and mapping</atitle><btitle>2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566)</btitle><stitle>IROS</stitle><date>2004</date><risdate>2004</risdate><volume>1</volume><spage>730</spage><epage>735 vol.1</epage><pages>730-735 vol.1</pages><isbn>9780780384637</isbn><isbn>0780384636</isbn><abstract>This paper illustrates a method for finding useful visual landmarks for performing simultaneous localization and mapping (SLAM). The method is based loosely on biological principles, using layers of filtering and pooling to create learned templates that correspond to different views of the environment. Rather than using a set of landmarks and reporting range and bearing to the landmark, this system maps views to poses. The challenge is to produce a system that produces the same view for small changes in robot pose, but provides different views for larger changes in pose. The method has been developed to interface with the RatSLAM system, a biologically inspired method of SLAM. The paper describes the method of learning and recalling visual landmarks in detail, and shows the performance of the visual system in real robot tests.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/IROS.2004.1389439</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780384637
ispartof 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), 2004, Vol.1, p.730-735 vol.1
issn
language eng
recordid cdi_ieee_primary_1389439
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied sciences
Artificial intelligence
Cameras
Computer science
control theory
systems
Computer vision
Control theory. Systems
Exact sciences and technology
Histograms
Information technology
Layout
Machine vision
Mobile robots
Pattern recognition. Digital image processing. Computational geometry
Robot vision systems
Robotics
Simultaneous localization and mapping
Visual system
title Biologically inspired visual landmark processing for simultaneous localization and mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Biologically%20inspired%20visual%20landmark%20processing%20for%20simultaneous%20localization%20and%20mapping&rft.btitle=2004%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems%20(IROS)%20(IEEE%20Cat.%20No.04CH37566)&rft.au=Prasser,%20D.P.&rft.date=2004&rft.volume=1&rft.spage=730&rft.epage=735%20vol.1&rft.pages=730-735%20vol.1&rft.isbn=9780780384637&rft.isbn_list=0780384636&rft_id=info:doi/10.1109/IROS.2004.1389439&rft_dat=%3Cpascalfrancis_6IE%3E18243461%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1389439&rfr_iscdi=true