Feature Combination and Relevance Feedback for 3D Model Retrieval

Retrieval of 3D models have attracted much research interest, and many types of shape features have been proposed. In this paper, we describe a novel approach of combining the feature types for 3D model retrieval and relevance feedback processing.Our approach performs query processing using pre-comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Atmosukarto, I., Wee Kheng Leow, Zhiyong Huang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 339
container_issue
container_start_page 334
container_title
container_volume
creator Atmosukarto, I.
Wee Kheng Leow
Zhiyong Huang
description Retrieval of 3D models have attracted much research interest, and many types of shape features have been proposed. In this paper, we describe a novel approach of combining the feature types for 3D model retrieval and relevance feedback processing.Our approach performs query processing using pre-computed pairwise distances between objects measured according to various feature types. Experimental tests show that this approach performs better than retrieval by individual feature type.
doi_str_mv 10.1109/MMMC.2005.39
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1386011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1386011</ieee_id><sourcerecordid>1386011</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-39c87eb4ca93c5bdb5baec68cab7ee73ea13d9ccc751f47c8e607c0a8368b8963</originalsourceid><addsrcrecordid>eNotjM1KxEAQhAdUcFlz8-ZlXiBxOpP5Oy7RVWGDIHpeejodGM0mkkTBtzegBUUdvqoS4hpUAaDCbdM0dVEqZQodzkQWnFfOBlOCrdS52IAxKl9dXopsnt_VqsqsO7MRuz3j8jWxrMdTTAMuaRwkDq184Z6_cSCWe-Y2In3IbpykvpPN2HK_8mVKa6O_Ehcd9jNn_7kVb_v71_oxPzw_PNW7Q57AmSXXgbzjWBEGTSa20URksp4wOmanGUG3gYicga5y5NkqRwq9tj76YPVW3Pz9JmY-fk7phNPPEbS3CkD_AoB4SZE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Feature Combination and Relevance Feedback for 3D Model Retrieval</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Atmosukarto, I. ; Wee Kheng Leow ; Zhiyong Huang</creator><creatorcontrib>Atmosukarto, I. ; Wee Kheng Leow ; Zhiyong Huang</creatorcontrib><description>Retrieval of 3D models have attracted much research interest, and many types of shape features have been proposed. In this paper, we describe a novel approach of combining the feature types for 3D model retrieval and relevance feedback processing.Our approach performs query processing using pre-computed pairwise distances between objects measured according to various feature types. Experimental tests show that this approach performs better than retrieval by individual feature type.</description><identifier>ISSN: 1550-5502</identifier><identifier>ISBN: 9780769521640</identifier><identifier>ISBN: 0769521649</identifier><identifier>DOI: 10.1109/MMMC.2005.39</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Drives ; Feature extraction ; Feedback ; Histograms ; Image retrieval ; Performance evaluation ; Query processing ; Shape ; Testing</subject><ispartof>11th International Multimedia Modelling Conference, 2005, p.334-339</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1386011$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4047,4048,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1386011$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Atmosukarto, I.</creatorcontrib><creatorcontrib>Wee Kheng Leow</creatorcontrib><creatorcontrib>Zhiyong Huang</creatorcontrib><title>Feature Combination and Relevance Feedback for 3D Model Retrieval</title><title>11th International Multimedia Modelling Conference</title><addtitle>MMMC</addtitle><description>Retrieval of 3D models have attracted much research interest, and many types of shape features have been proposed. In this paper, we describe a novel approach of combining the feature types for 3D model retrieval and relevance feedback processing.Our approach performs query processing using pre-computed pairwise distances between objects measured according to various feature types. Experimental tests show that this approach performs better than retrieval by individual feature type.</description><subject>Computer science</subject><subject>Drives</subject><subject>Feature extraction</subject><subject>Feedback</subject><subject>Histograms</subject><subject>Image retrieval</subject><subject>Performance evaluation</subject><subject>Query processing</subject><subject>Shape</subject><subject>Testing</subject><issn>1550-5502</issn><isbn>9780769521640</isbn><isbn>0769521649</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjM1KxEAQhAdUcFlz8-ZlXiBxOpP5Oy7RVWGDIHpeejodGM0mkkTBtzegBUUdvqoS4hpUAaDCbdM0dVEqZQodzkQWnFfOBlOCrdS52IAxKl9dXopsnt_VqsqsO7MRuz3j8jWxrMdTTAMuaRwkDq184Z6_cSCWe-Y2In3IbpykvpPN2HK_8mVKa6O_Ehcd9jNn_7kVb_v71_oxPzw_PNW7Q57AmSXXgbzjWBEGTSa20URksp4wOmanGUG3gYicga5y5NkqRwq9tj76YPVW3Pz9JmY-fk7phNPPEbS3CkD_AoB4SZE</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Atmosukarto, I.</creator><creator>Wee Kheng Leow</creator><creator>Zhiyong Huang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Feature Combination and Relevance Feedback for 3D Model Retrieval</title><author>Atmosukarto, I. ; Wee Kheng Leow ; Zhiyong Huang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-39c87eb4ca93c5bdb5baec68cab7ee73ea13d9ccc751f47c8e607c0a8368b8963</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Computer science</topic><topic>Drives</topic><topic>Feature extraction</topic><topic>Feedback</topic><topic>Histograms</topic><topic>Image retrieval</topic><topic>Performance evaluation</topic><topic>Query processing</topic><topic>Shape</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Atmosukarto, I.</creatorcontrib><creatorcontrib>Wee Kheng Leow</creatorcontrib><creatorcontrib>Zhiyong Huang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Atmosukarto, I.</au><au>Wee Kheng Leow</au><au>Zhiyong Huang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Feature Combination and Relevance Feedback for 3D Model Retrieval</atitle><btitle>11th International Multimedia Modelling Conference</btitle><stitle>MMMC</stitle><date>2005</date><risdate>2005</risdate><spage>334</spage><epage>339</epage><pages>334-339</pages><issn>1550-5502</issn><isbn>9780769521640</isbn><isbn>0769521649</isbn><abstract>Retrieval of 3D models have attracted much research interest, and many types of shape features have been proposed. In this paper, we describe a novel approach of combining the feature types for 3D model retrieval and relevance feedback processing.Our approach performs query processing using pre-computed pairwise distances between objects measured according to various feature types. Experimental tests show that this approach performs better than retrieval by individual feature type.</abstract><pub>IEEE</pub><doi>10.1109/MMMC.2005.39</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-5502
ispartof 11th International Multimedia Modelling Conference, 2005, p.334-339
issn 1550-5502
language eng
recordid cdi_ieee_primary_1386011
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer science
Drives
Feature extraction
Feedback
Histograms
Image retrieval
Performance evaluation
Query processing
Shape
Testing
title Feature Combination and Relevance Feedback for 3D Model Retrieval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Feature%20Combination%20and%20Relevance%20Feedback%20for%203D%20Model%20Retrieval&rft.btitle=11th%20International%20Multimedia%20Modelling%20Conference&rft.au=Atmosukarto,%20I.&rft.date=2005&rft.spage=334&rft.epage=339&rft.pages=334-339&rft.issn=1550-5502&rft.isbn=9780769521640&rft.isbn_list=0769521649&rft_id=info:doi/10.1109/MMMC.2005.39&rft_dat=%3Cieee_6IE%3E1386011%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1386011&rfr_iscdi=true