Feature Combination and Relevance Feedback for 3D Model Retrieval
Retrieval of 3D models have attracted much research interest, and many types of shape features have been proposed. In this paper, we describe a novel approach of combining the feature types for 3D model retrieval and relevance feedback processing.Our approach performs query processing using pre-comp...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 339 |
---|---|
container_issue | |
container_start_page | 334 |
container_title | |
container_volume | |
creator | Atmosukarto, I. Wee Kheng Leow Zhiyong Huang |
description | Retrieval of 3D models have attracted much research interest, and many types of shape features have been proposed. In this paper, we describe a novel approach of combining the feature types for 3D model retrieval and relevance feedback processing.Our approach performs query processing using pre-computed pairwise distances between objects measured according to various feature types. Experimental tests show that this approach performs better than retrieval by individual feature type. |
doi_str_mv | 10.1109/MMMC.2005.39 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1386011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1386011</ieee_id><sourcerecordid>1386011</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-39c87eb4ca93c5bdb5baec68cab7ee73ea13d9ccc751f47c8e607c0a8368b8963</originalsourceid><addsrcrecordid>eNotjM1KxEAQhAdUcFlz8-ZlXiBxOpP5Oy7RVWGDIHpeejodGM0mkkTBtzegBUUdvqoS4hpUAaDCbdM0dVEqZQodzkQWnFfOBlOCrdS52IAxKl9dXopsnt_VqsqsO7MRuz3j8jWxrMdTTAMuaRwkDq184Z6_cSCWe-Y2In3IbpykvpPN2HK_8mVKa6O_Ehcd9jNn_7kVb_v71_oxPzw_PNW7Q57AmSXXgbzjWBEGTSa20URksp4wOmanGUG3gYicga5y5NkqRwq9tj76YPVW3Pz9JmY-fk7phNPPEbS3CkD_AoB4SZE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Feature Combination and Relevance Feedback for 3D Model Retrieval</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Atmosukarto, I. ; Wee Kheng Leow ; Zhiyong Huang</creator><creatorcontrib>Atmosukarto, I. ; Wee Kheng Leow ; Zhiyong Huang</creatorcontrib><description>Retrieval of 3D models have attracted much research interest, and many types of shape features have been proposed. In this paper, we describe a novel approach of combining the feature types for 3D model retrieval and relevance feedback processing.Our approach performs query processing using pre-computed pairwise distances between objects measured according to various feature types. Experimental tests show that this approach performs better than retrieval by individual feature type.</description><identifier>ISSN: 1550-5502</identifier><identifier>ISBN: 9780769521640</identifier><identifier>ISBN: 0769521649</identifier><identifier>DOI: 10.1109/MMMC.2005.39</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Drives ; Feature extraction ; Feedback ; Histograms ; Image retrieval ; Performance evaluation ; Query processing ; Shape ; Testing</subject><ispartof>11th International Multimedia Modelling Conference, 2005, p.334-339</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1386011$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4047,4048,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1386011$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Atmosukarto, I.</creatorcontrib><creatorcontrib>Wee Kheng Leow</creatorcontrib><creatorcontrib>Zhiyong Huang</creatorcontrib><title>Feature Combination and Relevance Feedback for 3D Model Retrieval</title><title>11th International Multimedia Modelling Conference</title><addtitle>MMMC</addtitle><description>Retrieval of 3D models have attracted much research interest, and many types of shape features have been proposed. In this paper, we describe a novel approach of combining the feature types for 3D model retrieval and relevance feedback processing.Our approach performs query processing using pre-computed pairwise distances between objects measured according to various feature types. Experimental tests show that this approach performs better than retrieval by individual feature type.</description><subject>Computer science</subject><subject>Drives</subject><subject>Feature extraction</subject><subject>Feedback</subject><subject>Histograms</subject><subject>Image retrieval</subject><subject>Performance evaluation</subject><subject>Query processing</subject><subject>Shape</subject><subject>Testing</subject><issn>1550-5502</issn><isbn>9780769521640</isbn><isbn>0769521649</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjM1KxEAQhAdUcFlz8-ZlXiBxOpP5Oy7RVWGDIHpeejodGM0mkkTBtzegBUUdvqoS4hpUAaDCbdM0dVEqZQodzkQWnFfOBlOCrdS52IAxKl9dXopsnt_VqsqsO7MRuz3j8jWxrMdTTAMuaRwkDq184Z6_cSCWe-Y2In3IbpykvpPN2HK_8mVKa6O_Ehcd9jNn_7kVb_v71_oxPzw_PNW7Q57AmSXXgbzjWBEGTSa20URksp4wOmanGUG3gYicga5y5NkqRwq9tj76YPVW3Pz9JmY-fk7phNPPEbS3CkD_AoB4SZE</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Atmosukarto, I.</creator><creator>Wee Kheng Leow</creator><creator>Zhiyong Huang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Feature Combination and Relevance Feedback for 3D Model Retrieval</title><author>Atmosukarto, I. ; Wee Kheng Leow ; Zhiyong Huang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-39c87eb4ca93c5bdb5baec68cab7ee73ea13d9ccc751f47c8e607c0a8368b8963</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Computer science</topic><topic>Drives</topic><topic>Feature extraction</topic><topic>Feedback</topic><topic>Histograms</topic><topic>Image retrieval</topic><topic>Performance evaluation</topic><topic>Query processing</topic><topic>Shape</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Atmosukarto, I.</creatorcontrib><creatorcontrib>Wee Kheng Leow</creatorcontrib><creatorcontrib>Zhiyong Huang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Atmosukarto, I.</au><au>Wee Kheng Leow</au><au>Zhiyong Huang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Feature Combination and Relevance Feedback for 3D Model Retrieval</atitle><btitle>11th International Multimedia Modelling Conference</btitle><stitle>MMMC</stitle><date>2005</date><risdate>2005</risdate><spage>334</spage><epage>339</epage><pages>334-339</pages><issn>1550-5502</issn><isbn>9780769521640</isbn><isbn>0769521649</isbn><abstract>Retrieval of 3D models have attracted much research interest, and many types of shape features have been proposed. In this paper, we describe a novel approach of combining the feature types for 3D model retrieval and relevance feedback processing.Our approach performs query processing using pre-computed pairwise distances between objects measured according to various feature types. Experimental tests show that this approach performs better than retrieval by individual feature type.</abstract><pub>IEEE</pub><doi>10.1109/MMMC.2005.39</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-5502 |
ispartof | 11th International Multimedia Modelling Conference, 2005, p.334-339 |
issn | 1550-5502 |
language | eng |
recordid | cdi_ieee_primary_1386011 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer science Drives Feature extraction Feedback Histograms Image retrieval Performance evaluation Query processing Shape Testing |
title | Feature Combination and Relevance Feedback for 3D Model Retrieval |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Feature%20Combination%20and%20Relevance%20Feedback%20for%203D%20Model%20Retrieval&rft.btitle=11th%20International%20Multimedia%20Modelling%20Conference&rft.au=Atmosukarto,%20I.&rft.date=2005&rft.spage=334&rft.epage=339&rft.pages=334-339&rft.issn=1550-5502&rft.isbn=9780769521640&rft.isbn_list=0769521649&rft_id=info:doi/10.1109/MMMC.2005.39&rft_dat=%3Cieee_6IE%3E1386011%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1386011&rfr_iscdi=true |