An efficient mining algorithm for dependent patterns

Since many current IDSs are constructed by manual encoding of expert knowledge, updating of IDSs are expensive and slow. It is very clear that the frequent patterns mined from audit data can be used as reliable intrusion detection models. We propose efficiently parallel methods to extract an extensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jian-Jun Zhang, You-Lin Ruan, Qing-Hua Li, Shi-Da Yang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82 vol.1
container_issue
container_start_page 80
container_title
container_volume 1
creator Jian-Jun Zhang
You-Lin Ruan
Qing-Hua Li
Shi-Da Yang
description Since many current IDSs are constructed by manual encoding of expert knowledge, updating of IDSs are expensive and slow. It is very clear that the frequent patterns mined from audit data can be used as reliable intrusion detection models. We propose efficiently parallel methods to extract an extensive set of features that describe each network connection and learn frequent patterns that accurately capture the behavior of intrusions and normal activities, which are employed to facilitate model construction and incremental updates.
doi_str_mv 10.1109/ICMLC.2004.1380613
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1380613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1380613</ieee_id><sourcerecordid>1380613</sourcerecordid><originalsourceid>FETCH-LOGICAL-i173t-e04a249f2381bb959936212aabffc1163dd835fd86426dded2ec3abc0045da4e3</originalsourceid><addsrcrecordid>eNotj8tOwzAURC0hJKD0B2DjH0i49nVce1lFPCqlYtOuKye-LkaNGzne8PcU0dnM4kijM4w9CaiFAPuyabddW0sAVQs0oAXesAdYGUCjAOUdW87zN1yCttHS3jO1TpxCiEOkVPgYU0xH7k7Hc47la-ThnLmniZL_w5MrhXKaH9ltcKeZltdesP3b6679qLrP90277qooVlgqAuWkskGiEX1vG2tRSyGd60MYhNDovcEmeKOV1N6TlzSg64eLfeOdIlyw5__dSESHKcfR5Z_D9Rj-AlCIRAA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An efficient mining algorithm for dependent patterns</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jian-Jun Zhang ; You-Lin Ruan ; Qing-Hua Li ; Shi-Da Yang</creator><creatorcontrib>Jian-Jun Zhang ; You-Lin Ruan ; Qing-Hua Li ; Shi-Da Yang</creatorcontrib><description>Since many current IDSs are constructed by manual encoding of expert knowledge, updating of IDSs are expensive and slow. It is very clear that the frequent patterns mined from audit data can be used as reliable intrusion detection models. We propose efficiently parallel methods to extract an extensive set of features that describe each network connection and learn frequent patterns that accurately capture the behavior of intrusions and normal activities, which are employed to facilitate model construction and incremental updates.</description><identifier>ISBN: 0780384032</identifier><identifier>ISBN: 9780780384033</identifier><identifier>DOI: 10.1109/ICMLC.2004.1380613</identifier><language>eng</language><publisher>IEEE</publisher><subject>Association rules ; Computer science ; Cybernetics ; Data mining ; Encoding ; Intrusion detection ; Itemsets ; Iterative algorithms ; Machine learning algorithms</subject><ispartof>Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826), 2004, Vol.1, p.80-82 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1380613$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1380613$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jian-Jun Zhang</creatorcontrib><creatorcontrib>You-Lin Ruan</creatorcontrib><creatorcontrib>Qing-Hua Li</creatorcontrib><creatorcontrib>Shi-Da Yang</creatorcontrib><title>An efficient mining algorithm for dependent patterns</title><title>Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826)</title><addtitle>ICMLC</addtitle><description>Since many current IDSs are constructed by manual encoding of expert knowledge, updating of IDSs are expensive and slow. It is very clear that the frequent patterns mined from audit data can be used as reliable intrusion detection models. We propose efficiently parallel methods to extract an extensive set of features that describe each network connection and learn frequent patterns that accurately capture the behavior of intrusions and normal activities, which are employed to facilitate model construction and incremental updates.</description><subject>Association rules</subject><subject>Computer science</subject><subject>Cybernetics</subject><subject>Data mining</subject><subject>Encoding</subject><subject>Intrusion detection</subject><subject>Itemsets</subject><subject>Iterative algorithms</subject><subject>Machine learning algorithms</subject><isbn>0780384032</isbn><isbn>9780780384033</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tOwzAURC0hJKD0B2DjH0i49nVce1lFPCqlYtOuKye-LkaNGzne8PcU0dnM4kijM4w9CaiFAPuyabddW0sAVQs0oAXesAdYGUCjAOUdW87zN1yCttHS3jO1TpxCiEOkVPgYU0xH7k7Hc47la-ThnLmniZL_w5MrhXKaH9ltcKeZltdesP3b6679qLrP90277qooVlgqAuWkskGiEX1vG2tRSyGd60MYhNDovcEmeKOV1N6TlzSg64eLfeOdIlyw5__dSESHKcfR5Z_D9Rj-AlCIRAA</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Jian-Jun Zhang</creator><creator>You-Lin Ruan</creator><creator>Qing-Hua Li</creator><creator>Shi-Da Yang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>An efficient mining algorithm for dependent patterns</title><author>Jian-Jun Zhang ; You-Lin Ruan ; Qing-Hua Li ; Shi-Da Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i173t-e04a249f2381bb959936212aabffc1163dd835fd86426dded2ec3abc0045da4e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Association rules</topic><topic>Computer science</topic><topic>Cybernetics</topic><topic>Data mining</topic><topic>Encoding</topic><topic>Intrusion detection</topic><topic>Itemsets</topic><topic>Iterative algorithms</topic><topic>Machine learning algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Jian-Jun Zhang</creatorcontrib><creatorcontrib>You-Lin Ruan</creatorcontrib><creatorcontrib>Qing-Hua Li</creatorcontrib><creatorcontrib>Shi-Da Yang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jian-Jun Zhang</au><au>You-Lin Ruan</au><au>Qing-Hua Li</au><au>Shi-Da Yang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An efficient mining algorithm for dependent patterns</atitle><btitle>Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826)</btitle><stitle>ICMLC</stitle><date>2004</date><risdate>2004</risdate><volume>1</volume><spage>80</spage><epage>82 vol.1</epage><pages>80-82 vol.1</pages><isbn>0780384032</isbn><isbn>9780780384033</isbn><abstract>Since many current IDSs are constructed by manual encoding of expert knowledge, updating of IDSs are expensive and slow. It is very clear that the frequent patterns mined from audit data can be used as reliable intrusion detection models. We propose efficiently parallel methods to extract an extensive set of features that describe each network connection and learn frequent patterns that accurately capture the behavior of intrusions and normal activities, which are employed to facilitate model construction and incremental updates.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2004.1380613</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780384032
ispartof Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826), 2004, Vol.1, p.80-82 vol.1
issn
language eng
recordid cdi_ieee_primary_1380613
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Association rules
Computer science
Cybernetics
Data mining
Encoding
Intrusion detection
Itemsets
Iterative algorithms
Machine learning algorithms
title An efficient mining algorithm for dependent patterns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A22%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20efficient%20mining%20algorithm%20for%20dependent%20patterns&rft.btitle=Proceedings%20of%202004%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics%20(IEEE%20Cat.%20No.04EX826)&rft.au=Jian-Jun%20Zhang&rft.date=2004&rft.volume=1&rft.spage=80&rft.epage=82%20vol.1&rft.pages=80-82%20vol.1&rft.isbn=0780384032&rft.isbn_list=9780780384033&rft_id=info:doi/10.1109/ICMLC.2004.1380613&rft_dat=%3Cieee_6IE%3E1380613%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1380613&rfr_iscdi=true