An efficient mining algorithm for dependent patterns
Since many current IDSs are constructed by manual encoding of expert knowledge, updating of IDSs are expensive and slow. It is very clear that the frequent patterns mined from audit data can be used as reliable intrusion detection models. We propose efficiently parallel methods to extract an extensi...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 82 vol.1 |
---|---|
container_issue | |
container_start_page | 80 |
container_title | |
container_volume | 1 |
creator | Jian-Jun Zhang You-Lin Ruan Qing-Hua Li Shi-Da Yang |
description | Since many current IDSs are constructed by manual encoding of expert knowledge, updating of IDSs are expensive and slow. It is very clear that the frequent patterns mined from audit data can be used as reliable intrusion detection models. We propose efficiently parallel methods to extract an extensive set of features that describe each network connection and learn frequent patterns that accurately capture the behavior of intrusions and normal activities, which are employed to facilitate model construction and incremental updates. |
doi_str_mv | 10.1109/ICMLC.2004.1380613 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1380613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1380613</ieee_id><sourcerecordid>1380613</sourcerecordid><originalsourceid>FETCH-LOGICAL-i173t-e04a249f2381bb959936212aabffc1163dd835fd86426dded2ec3abc0045da4e3</originalsourceid><addsrcrecordid>eNotj8tOwzAURC0hJKD0B2DjH0i49nVce1lFPCqlYtOuKye-LkaNGzne8PcU0dnM4kijM4w9CaiFAPuyabddW0sAVQs0oAXesAdYGUCjAOUdW87zN1yCttHS3jO1TpxCiEOkVPgYU0xH7k7Hc47la-ThnLmniZL_w5MrhXKaH9ltcKeZltdesP3b6679qLrP90277qooVlgqAuWkskGiEX1vG2tRSyGd60MYhNDovcEmeKOV1N6TlzSg64eLfeOdIlyw5__dSESHKcfR5Z_D9Rj-AlCIRAA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An efficient mining algorithm for dependent patterns</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jian-Jun Zhang ; You-Lin Ruan ; Qing-Hua Li ; Shi-Da Yang</creator><creatorcontrib>Jian-Jun Zhang ; You-Lin Ruan ; Qing-Hua Li ; Shi-Da Yang</creatorcontrib><description>Since many current IDSs are constructed by manual encoding of expert knowledge, updating of IDSs are expensive and slow. It is very clear that the frequent patterns mined from audit data can be used as reliable intrusion detection models. We propose efficiently parallel methods to extract an extensive set of features that describe each network connection and learn frequent patterns that accurately capture the behavior of intrusions and normal activities, which are employed to facilitate model construction and incremental updates.</description><identifier>ISBN: 0780384032</identifier><identifier>ISBN: 9780780384033</identifier><identifier>DOI: 10.1109/ICMLC.2004.1380613</identifier><language>eng</language><publisher>IEEE</publisher><subject>Association rules ; Computer science ; Cybernetics ; Data mining ; Encoding ; Intrusion detection ; Itemsets ; Iterative algorithms ; Machine learning algorithms</subject><ispartof>Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826), 2004, Vol.1, p.80-82 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1380613$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1380613$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jian-Jun Zhang</creatorcontrib><creatorcontrib>You-Lin Ruan</creatorcontrib><creatorcontrib>Qing-Hua Li</creatorcontrib><creatorcontrib>Shi-Da Yang</creatorcontrib><title>An efficient mining algorithm for dependent patterns</title><title>Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826)</title><addtitle>ICMLC</addtitle><description>Since many current IDSs are constructed by manual encoding of expert knowledge, updating of IDSs are expensive and slow. It is very clear that the frequent patterns mined from audit data can be used as reliable intrusion detection models. We propose efficiently parallel methods to extract an extensive set of features that describe each network connection and learn frequent patterns that accurately capture the behavior of intrusions and normal activities, which are employed to facilitate model construction and incremental updates.</description><subject>Association rules</subject><subject>Computer science</subject><subject>Cybernetics</subject><subject>Data mining</subject><subject>Encoding</subject><subject>Intrusion detection</subject><subject>Itemsets</subject><subject>Iterative algorithms</subject><subject>Machine learning algorithms</subject><isbn>0780384032</isbn><isbn>9780780384033</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tOwzAURC0hJKD0B2DjH0i49nVce1lFPCqlYtOuKye-LkaNGzne8PcU0dnM4kijM4w9CaiFAPuyabddW0sAVQs0oAXesAdYGUCjAOUdW87zN1yCttHS3jO1TpxCiEOkVPgYU0xH7k7Hc47la-ThnLmniZL_w5MrhXKaH9ltcKeZltdesP3b6679qLrP90277qooVlgqAuWkskGiEX1vG2tRSyGd60MYhNDovcEmeKOV1N6TlzSg64eLfeOdIlyw5__dSESHKcfR5Z_D9Rj-AlCIRAA</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Jian-Jun Zhang</creator><creator>You-Lin Ruan</creator><creator>Qing-Hua Li</creator><creator>Shi-Da Yang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>An efficient mining algorithm for dependent patterns</title><author>Jian-Jun Zhang ; You-Lin Ruan ; Qing-Hua Li ; Shi-Da Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i173t-e04a249f2381bb959936212aabffc1163dd835fd86426dded2ec3abc0045da4e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Association rules</topic><topic>Computer science</topic><topic>Cybernetics</topic><topic>Data mining</topic><topic>Encoding</topic><topic>Intrusion detection</topic><topic>Itemsets</topic><topic>Iterative algorithms</topic><topic>Machine learning algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Jian-Jun Zhang</creatorcontrib><creatorcontrib>You-Lin Ruan</creatorcontrib><creatorcontrib>Qing-Hua Li</creatorcontrib><creatorcontrib>Shi-Da Yang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jian-Jun Zhang</au><au>You-Lin Ruan</au><au>Qing-Hua Li</au><au>Shi-Da Yang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An efficient mining algorithm for dependent patterns</atitle><btitle>Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826)</btitle><stitle>ICMLC</stitle><date>2004</date><risdate>2004</risdate><volume>1</volume><spage>80</spage><epage>82 vol.1</epage><pages>80-82 vol.1</pages><isbn>0780384032</isbn><isbn>9780780384033</isbn><abstract>Since many current IDSs are constructed by manual encoding of expert knowledge, updating of IDSs are expensive and slow. It is very clear that the frequent patterns mined from audit data can be used as reliable intrusion detection models. We propose efficiently parallel methods to extract an extensive set of features that describe each network connection and learn frequent patterns that accurately capture the behavior of intrusions and normal activities, which are employed to facilitate model construction and incremental updates.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2004.1380613</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780384032 |
ispartof | Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826), 2004, Vol.1, p.80-82 vol.1 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1380613 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Association rules Computer science Cybernetics Data mining Encoding Intrusion detection Itemsets Iterative algorithms Machine learning algorithms |
title | An efficient mining algorithm for dependent patterns |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A22%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20efficient%20mining%20algorithm%20for%20dependent%20patterns&rft.btitle=Proceedings%20of%202004%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics%20(IEEE%20Cat.%20No.04EX826)&rft.au=Jian-Jun%20Zhang&rft.date=2004&rft.volume=1&rft.spage=80&rft.epage=82%20vol.1&rft.pages=80-82%20vol.1&rft.isbn=0780384032&rft.isbn_list=9780780384033&rft_id=info:doi/10.1109/ICMLC.2004.1380613&rft_dat=%3Cieee_6IE%3E1380613%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1380613&rfr_iscdi=true |