Conditional diagnosability measures for large multiprocessor systems

Diagnosability has played an important role in the reliability of an interconnection network. The classical problem of fault diagnosis is discussed widely and the diagnosability of many well-known networks have been explored. We introduce a new measure of diagnosability, called conditional diagnosab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers 2005-02, Vol.54 (2), p.165-175
Hauptverfasser: Pao-Lien Lai, Tan, J.J.M., Chien-Ping Chang, Lih-Hsing Hsu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue 2
container_start_page 165
container_title IEEE transactions on computers
container_volume 54
creator Pao-Lien Lai
Tan, J.J.M.
Chien-Ping Chang
Lih-Hsing Hsu
description Diagnosability has played an important role in the reliability of an interconnection network. The classical problem of fault diagnosis is discussed widely and the diagnosability of many well-known networks have been explored. We introduce a new measure of diagnosability, called conditional diagnosability, by restricting that any faulty set cannot contain all the neighbors of any vertex in the graph. Based on this requirement, the conditional diagnosability of the n-dimensional hypercube is shown to be 4(n - 2) +1, which is about four times as large as the classical diagnosability. Besides, we propose some useful conditions for verifying if a system is t-diagnosable and introduce a new concept, called a strongly t-diagnosable system, under the PMC model. Applying these concepts and conditions, we investigate some t-diagnosable networks which are also strongly t-diagnosable.
doi_str_mv 10.1109/TC.2005.19
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1377155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1377155</ieee_id><sourcerecordid>28014196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-4b7fc3afa7be1587d052d00262a2911342d09e5d9bfdf856da761cb625e64ed23</originalsourceid><addsrcrecordid>eNpdkD1rwzAQhkVpoenH0rWL6dCh4PQkW5I1FvcTAl3SWcjWOSj4I9XZQ_59HVIodDre4-Hl7mHshsOSczCP63IpAOSSmxO24FLq1BipTtkCgBepyXI4ZxdEWwBQAsyCPZdD78MYht61iQ9u0w_kqtCGcZ906GiKSEkzxKR1cYNJN7Vj2MWhRqJ5SXsasaMrdta4lvD6d16yr9eXdfmerj7fPsqnVVpnYMY0r3RTZ65xukIuC-1BCg8glHDCcJ7lczIovaka3xRSeacVryslJKocvcgu2f2xd77ge0IabReoxrZ1PQ4TWVEAz7lRM3j3D9wOU5xfJFsoLbnk-tD2cITqOBBFbOwuhs7FveVgDzbturQHm5abGb49wgER_8BM69ly9gPp7nBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867515172</pqid></control><display><type>article</type><title>Conditional diagnosability measures for large multiprocessor systems</title><source>IEEE Electronic Library (IEL)</source><creator>Pao-Lien Lai ; Tan, J.J.M. ; Chien-Ping Chang ; Lih-Hsing Hsu</creator><creatorcontrib>Pao-Lien Lai ; Tan, J.J.M. ; Chien-Ping Chang ; Lih-Hsing Hsu</creatorcontrib><description>Diagnosability has played an important role in the reliability of an interconnection network. The classical problem of fault diagnosis is discussed widely and the diagnosability of many well-known networks have been explored. We introduce a new measure of diagnosability, called conditional diagnosability, by restricting that any faulty set cannot contain all the neighbors of any vertex in the graph. Based on this requirement, the conditional diagnosability of the n-dimensional hypercube is shown to be 4(n - 2) +1, which is about four times as large as the classical diagnosability. Besides, we propose some useful conditions for verifying if a system is t-diagnosable and introduce a new concept, called a strongly t-diagnosable system, under the PMC model. Applying these concepts and conditions, we investigate some t-diagnosable networks which are also strongly t-diagnosable.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2005.19</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer fault tolerance ; conditional diagnosability ; conditional faulty set ; diagnosability ; Fault diagnosis ; Graph theory ; Hypercubes ; Index Terms- PMC model ; Multiprocessing ; strongly t{\hbox{-}}{\rm diagnosable} ; t{\hbox{-}}{\rm diagnosable}</subject><ispartof>IEEE transactions on computers, 2005-02, Vol.54 (2), p.165-175</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-4b7fc3afa7be1587d052d00262a2911342d09e5d9bfdf856da761cb625e64ed23</citedby><cites>FETCH-LOGICAL-c309t-4b7fc3afa7be1587d052d00262a2911342d09e5d9bfdf856da761cb625e64ed23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1377155$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1377155$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pao-Lien Lai</creatorcontrib><creatorcontrib>Tan, J.J.M.</creatorcontrib><creatorcontrib>Chien-Ping Chang</creatorcontrib><creatorcontrib>Lih-Hsing Hsu</creatorcontrib><title>Conditional diagnosability measures for large multiprocessor systems</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>Diagnosability has played an important role in the reliability of an interconnection network. The classical problem of fault diagnosis is discussed widely and the diagnosability of many well-known networks have been explored. We introduce a new measure of diagnosability, called conditional diagnosability, by restricting that any faulty set cannot contain all the neighbors of any vertex in the graph. Based on this requirement, the conditional diagnosability of the n-dimensional hypercube is shown to be 4(n - 2) +1, which is about four times as large as the classical diagnosability. Besides, we propose some useful conditions for verifying if a system is t-diagnosable and introduce a new concept, called a strongly t-diagnosable system, under the PMC model. Applying these concepts and conditions, we investigate some t-diagnosable networks which are also strongly t-diagnosable.</description><subject>Computer fault tolerance</subject><subject>conditional diagnosability</subject><subject>conditional faulty set</subject><subject>diagnosability</subject><subject>Fault diagnosis</subject><subject>Graph theory</subject><subject>Hypercubes</subject><subject>Index Terms- PMC model</subject><subject>Multiprocessing</subject><subject>strongly t{\hbox{-}}{\rm diagnosable}</subject><subject>t{\hbox{-}}{\rm diagnosable}</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1rwzAQhkVpoenH0rWL6dCh4PQkW5I1FvcTAl3SWcjWOSj4I9XZQ_59HVIodDre4-Hl7mHshsOSczCP63IpAOSSmxO24FLq1BipTtkCgBepyXI4ZxdEWwBQAsyCPZdD78MYht61iQ9u0w_kqtCGcZ906GiKSEkzxKR1cYNJN7Vj2MWhRqJ5SXsasaMrdta4lvD6d16yr9eXdfmerj7fPsqnVVpnYMY0r3RTZ65xukIuC-1BCg8glHDCcJ7lczIovaka3xRSeacVryslJKocvcgu2f2xd77ge0IabReoxrZ1PQ4TWVEAz7lRM3j3D9wOU5xfJFsoLbnk-tD2cITqOBBFbOwuhs7FveVgDzbturQHm5abGb49wgER_8BM69ly9gPp7nBg</recordid><startdate>200502</startdate><enddate>200502</enddate><creator>Pao-Lien Lai</creator><creator>Tan, J.J.M.</creator><creator>Chien-Ping Chang</creator><creator>Lih-Hsing Hsu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200502</creationdate><title>Conditional diagnosability measures for large multiprocessor systems</title><author>Pao-Lien Lai ; Tan, J.J.M. ; Chien-Ping Chang ; Lih-Hsing Hsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-4b7fc3afa7be1587d052d00262a2911342d09e5d9bfdf856da761cb625e64ed23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Computer fault tolerance</topic><topic>conditional diagnosability</topic><topic>conditional faulty set</topic><topic>diagnosability</topic><topic>Fault diagnosis</topic><topic>Graph theory</topic><topic>Hypercubes</topic><topic>Index Terms- PMC model</topic><topic>Multiprocessing</topic><topic>strongly t{\hbox{-}}{\rm diagnosable}</topic><topic>t{\hbox{-}}{\rm diagnosable}</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pao-Lien Lai</creatorcontrib><creatorcontrib>Tan, J.J.M.</creatorcontrib><creatorcontrib>Chien-Ping Chang</creatorcontrib><creatorcontrib>Lih-Hsing Hsu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pao-Lien Lai</au><au>Tan, J.J.M.</au><au>Chien-Ping Chang</au><au>Lih-Hsing Hsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditional diagnosability measures for large multiprocessor systems</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2005-02</date><risdate>2005</risdate><volume>54</volume><issue>2</issue><spage>165</spage><epage>175</epage><pages>165-175</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>Diagnosability has played an important role in the reliability of an interconnection network. The classical problem of fault diagnosis is discussed widely and the diagnosability of many well-known networks have been explored. We introduce a new measure of diagnosability, called conditional diagnosability, by restricting that any faulty set cannot contain all the neighbors of any vertex in the graph. Based on this requirement, the conditional diagnosability of the n-dimensional hypercube is shown to be 4(n - 2) +1, which is about four times as large as the classical diagnosability. Besides, we propose some useful conditions for verifying if a system is t-diagnosable and introduce a new concept, called a strongly t-diagnosable system, under the PMC model. Applying these concepts and conditions, we investigate some t-diagnosable networks which are also strongly t-diagnosable.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TC.2005.19</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9340
ispartof IEEE transactions on computers, 2005-02, Vol.54 (2), p.165-175
issn 0018-9340
1557-9956
language eng
recordid cdi_ieee_primary_1377155
source IEEE Electronic Library (IEL)
subjects Computer fault tolerance
conditional diagnosability
conditional faulty set
diagnosability
Fault diagnosis
Graph theory
Hypercubes
Index Terms- PMC model
Multiprocessing
strongly t{\hbox{-}}{\rm diagnosable}
t{\hbox{-}}{\rm diagnosable}
title Conditional diagnosability measures for large multiprocessor systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A39%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditional%20diagnosability%20measures%20for%20large%20multiprocessor%20systems&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Pao-Lien%20Lai&rft.date=2005-02&rft.volume=54&rft.issue=2&rft.spage=165&rft.epage=175&rft.pages=165-175&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2005.19&rft_dat=%3Cproquest_RIE%3E28014196%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867515172&rft_id=info:pmid/&rft_ieee_id=1377155&rfr_iscdi=true