A cost-efficient high-performance dynamic TCAM with pipelined hierarchical searching and shift redundancy architecture

This paper describes a 4.5-Mb dynamic ternary CAM (DTCAM) which is suitable for networking applications. A dynamic TCAM cell structure in 130-nm embedded DRAM technology is used to realize the small cell size of 3.59 /spl mu/m/sup 2/. In addition, a novel array architecture of TCAM, the pipelined hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2005-01, Vol.40 (1), p.245-253
Hauptverfasser: Noda, H., Inoue, K., Kuroiwa, M., Igaue, F., Yamamoto, K., Mattausch, H.J., Koide, T., Amo, A., Hachisuka, A., Soeda, S., Hayashi, I., Morishita, F., Dosaka, K., Arimoto, K., Fujishima, K., Anami, K., Yoshihara, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 253
container_issue 1
container_start_page 245
container_title IEEE journal of solid-state circuits
container_volume 40
creator Noda, H.
Inoue, K.
Kuroiwa, M.
Igaue, F.
Yamamoto, K.
Mattausch, H.J.
Koide, T.
Amo, A.
Hachisuka, A.
Soeda, S.
Hayashi, I.
Morishita, F.
Dosaka, K.
Arimoto, K.
Fujishima, K.
Anami, K.
Yoshihara, T.
description This paper describes a 4.5-Mb dynamic ternary CAM (DTCAM) which is suitable for networking applications. A dynamic TCAM cell structure in 130-nm embedded DRAM technology is used to realize the small cell size of 3.59 /spl mu/m/sup 2/. In addition, a novel array architecture of TCAM, the pipelined hierarchical searching (PHS) architecture, is proposed. The PHS architecture is found to be suitable for realizing small area penalty, high-throughput searching and low-voltage operation simultaneously. With the combination of the DTCAM cell and the PHS architecture, small silicon area of 32 mm/sup 2/ for a fabricated 4.5-Mb DTCAM chip, high performance of 143 M searches per second and low power dissipation of 1.1 W have been achieved. To improve the yield of TCAMs, a novel shift redundancy technique is applied and estimated to result in 3.6-times yield improvement. These techniques and architectures described in this report are attractive for realizing cost-efficient, large-scale, high-performance TCAM chips.
doi_str_mv 10.1109/JSSC.2004.838016
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1375008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1375008</ieee_id><sourcerecordid>27991709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-94fd6e16cff1fd735c8b08e27e4309d42533e0a39c4fd16c35a8b08b711c14e23</originalsourceid><addsrcrecordid>eNp90UFrFDEUB_AgCq7Vu-AlCEovs-ZNMpPkuCxalYqHVvAW0sxLJ2U2MyYzyn57M91CwYMQSML75UHen5DXwLYATH_4enW139aMia3iikH7hGygaVQFkv98SjaMgap0qT8nL3K-K1chFGzI7x11Y54r9D64gHGmfbjtqwmTH9PBRoe0O0Z7CI5e73ff6J8w93QKEw4hYlcwJptcH5wdaMb7Y7ylNnY098HPNGG3xK70OdL74oxuXhK-JM-8HTK-etjPyI9PH6_3n6vL7xdf9rvLynEl5koL37UIrfMefCd549QNU1hLFJzpTtQN58gs167AwnhjV3AjARwIrPkZeX_qO6Xx14J5NoeQHQ6DjTgu2dRSa5BMF3j-XwithFq2DFb69h96Ny4plm8YDaAVa1RbEDshl8acE3ozpXCw6WiAmTUwswZm1sDMKbDy5N1DX5vLOH0qUwv58V0rZFlQ3JuTC4j4WOayYUzxv9iMn0Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911980586</pqid></control><display><type>article</type><title>A cost-efficient high-performance dynamic TCAM with pipelined hierarchical searching and shift redundancy architecture</title><source>IEEE Electronic Library (IEL)</source><creator>Noda, H. ; Inoue, K. ; Kuroiwa, M. ; Igaue, F. ; Yamamoto, K. ; Mattausch, H.J. ; Koide, T. ; Amo, A. ; Hachisuka, A. ; Soeda, S. ; Hayashi, I. ; Morishita, F. ; Dosaka, K. ; Arimoto, K. ; Fujishima, K. ; Anami, K. ; Yoshihara, T.</creator><creatorcontrib>Noda, H. ; Inoue, K. ; Kuroiwa, M. ; Igaue, F. ; Yamamoto, K. ; Mattausch, H.J. ; Koide, T. ; Amo, A. ; Hachisuka, A. ; Soeda, S. ; Hayashi, I. ; Morishita, F. ; Dosaka, K. ; Arimoto, K. ; Fujishima, K. ; Anami, K. ; Yoshihara, T.</creatorcontrib><description>This paper describes a 4.5-Mb dynamic ternary CAM (DTCAM) which is suitable for networking applications. A dynamic TCAM cell structure in 130-nm embedded DRAM technology is used to realize the small cell size of 3.59 /spl mu/m/sup 2/. In addition, a novel array architecture of TCAM, the pipelined hierarchical searching (PHS) architecture, is proposed. The PHS architecture is found to be suitable for realizing small area penalty, high-throughput searching and low-voltage operation simultaneously. With the combination of the DTCAM cell and the PHS architecture, small silicon area of 32 mm/sup 2/ for a fabricated 4.5-Mb DTCAM chip, high performance of 143 M searches per second and low power dissipation of 1.1 W have been achieved. To improve the yield of TCAMs, a novel shift redundancy technique is applied and estimated to result in 3.6-times yield improvement. These techniques and architectures described in this report are attractive for realizing cost-efficient, large-scale, high-performance TCAM chips.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2004.838016</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Architecture ; Arrays ; CADCAM ; Chip formation ; Chips ; Circuits ; CMOS memory integrated circuits ; Computer aided manufacturing ; Costs ; Design. Technologies. Operation analysis. Testing ; Dynamics ; Electronics ; embedded DRAM ; Exact sciences and technology ; Integrated circuit yield ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Large-scale systems ; network ; Power dissipation ; Random access memory ; Redundancy ; Searching ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon ; ternary CAM ; Yield estimation</subject><ispartof>IEEE journal of solid-state circuits, 2005-01, Vol.40 (1), p.245-253</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-94fd6e16cff1fd735c8b08e27e4309d42533e0a39c4fd16c35a8b08b711c14e23</citedby><cites>FETCH-LOGICAL-c384t-94fd6e16cff1fd735c8b08e27e4309d42533e0a39c4fd16c35a8b08b711c14e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1375008$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,4036,4037,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1375008$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16476471$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Noda, H.</creatorcontrib><creatorcontrib>Inoue, K.</creatorcontrib><creatorcontrib>Kuroiwa, M.</creatorcontrib><creatorcontrib>Igaue, F.</creatorcontrib><creatorcontrib>Yamamoto, K.</creatorcontrib><creatorcontrib>Mattausch, H.J.</creatorcontrib><creatorcontrib>Koide, T.</creatorcontrib><creatorcontrib>Amo, A.</creatorcontrib><creatorcontrib>Hachisuka, A.</creatorcontrib><creatorcontrib>Soeda, S.</creatorcontrib><creatorcontrib>Hayashi, I.</creatorcontrib><creatorcontrib>Morishita, F.</creatorcontrib><creatorcontrib>Dosaka, K.</creatorcontrib><creatorcontrib>Arimoto, K.</creatorcontrib><creatorcontrib>Fujishima, K.</creatorcontrib><creatorcontrib>Anami, K.</creatorcontrib><creatorcontrib>Yoshihara, T.</creatorcontrib><title>A cost-efficient high-performance dynamic TCAM with pipelined hierarchical searching and shift redundancy architecture</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>This paper describes a 4.5-Mb dynamic ternary CAM (DTCAM) which is suitable for networking applications. A dynamic TCAM cell structure in 130-nm embedded DRAM technology is used to realize the small cell size of 3.59 /spl mu/m/sup 2/. In addition, a novel array architecture of TCAM, the pipelined hierarchical searching (PHS) architecture, is proposed. The PHS architecture is found to be suitable for realizing small area penalty, high-throughput searching and low-voltage operation simultaneously. With the combination of the DTCAM cell and the PHS architecture, small silicon area of 32 mm/sup 2/ for a fabricated 4.5-Mb DTCAM chip, high performance of 143 M searches per second and low power dissipation of 1.1 W have been achieved. To improve the yield of TCAMs, a novel shift redundancy technique is applied and estimated to result in 3.6-times yield improvement. These techniques and architectures described in this report are attractive for realizing cost-efficient, large-scale, high-performance TCAM chips.</description><subject>Applied sciences</subject><subject>Architecture</subject><subject>Arrays</subject><subject>CADCAM</subject><subject>Chip formation</subject><subject>Chips</subject><subject>Circuits</subject><subject>CMOS memory integrated circuits</subject><subject>Computer aided manufacturing</subject><subject>Costs</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Dynamics</subject><subject>Electronics</subject><subject>embedded DRAM</subject><subject>Exact sciences and technology</subject><subject>Integrated circuit yield</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Large-scale systems</subject><subject>network</subject><subject>Power dissipation</subject><subject>Random access memory</subject><subject>Redundancy</subject><subject>Searching</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon</subject><subject>ternary CAM</subject><subject>Yield estimation</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90UFrFDEUB_AgCq7Vu-AlCEovs-ZNMpPkuCxalYqHVvAW0sxLJ2U2MyYzyn57M91CwYMQSML75UHen5DXwLYATH_4enW139aMia3iikH7hGygaVQFkv98SjaMgap0qT8nL3K-K1chFGzI7x11Y54r9D64gHGmfbjtqwmTH9PBRoe0O0Z7CI5e73ff6J8w93QKEw4hYlcwJptcH5wdaMb7Y7ylNnY098HPNGG3xK70OdL74oxuXhK-JM-8HTK-etjPyI9PH6_3n6vL7xdf9rvLynEl5koL37UIrfMefCd549QNU1hLFJzpTtQN58gs167AwnhjV3AjARwIrPkZeX_qO6Xx14J5NoeQHQ6DjTgu2dRSa5BMF3j-XwithFq2DFb69h96Ny4plm8YDaAVa1RbEDshl8acE3ozpXCw6WiAmTUwswZm1sDMKbDy5N1DX5vLOH0qUwv58V0rZFlQ3JuTC4j4WOayYUzxv9iMn0Y</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Noda, H.</creator><creator>Inoue, K.</creator><creator>Kuroiwa, M.</creator><creator>Igaue, F.</creator><creator>Yamamoto, K.</creator><creator>Mattausch, H.J.</creator><creator>Koide, T.</creator><creator>Amo, A.</creator><creator>Hachisuka, A.</creator><creator>Soeda, S.</creator><creator>Hayashi, I.</creator><creator>Morishita, F.</creator><creator>Dosaka, K.</creator><creator>Arimoto, K.</creator><creator>Fujishima, K.</creator><creator>Anami, K.</creator><creator>Yoshihara, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200501</creationdate><title>A cost-efficient high-performance dynamic TCAM with pipelined hierarchical searching and shift redundancy architecture</title><author>Noda, H. ; Inoue, K. ; Kuroiwa, M. ; Igaue, F. ; Yamamoto, K. ; Mattausch, H.J. ; Koide, T. ; Amo, A. ; Hachisuka, A. ; Soeda, S. ; Hayashi, I. ; Morishita, F. ; Dosaka, K. ; Arimoto, K. ; Fujishima, K. ; Anami, K. ; Yoshihara, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-94fd6e16cff1fd735c8b08e27e4309d42533e0a39c4fd16c35a8b08b711c14e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Architecture</topic><topic>Arrays</topic><topic>CADCAM</topic><topic>Chip formation</topic><topic>Chips</topic><topic>Circuits</topic><topic>CMOS memory integrated circuits</topic><topic>Computer aided manufacturing</topic><topic>Costs</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Dynamics</topic><topic>Electronics</topic><topic>embedded DRAM</topic><topic>Exact sciences and technology</topic><topic>Integrated circuit yield</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Large-scale systems</topic><topic>network</topic><topic>Power dissipation</topic><topic>Random access memory</topic><topic>Redundancy</topic><topic>Searching</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon</topic><topic>ternary CAM</topic><topic>Yield estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noda, H.</creatorcontrib><creatorcontrib>Inoue, K.</creatorcontrib><creatorcontrib>Kuroiwa, M.</creatorcontrib><creatorcontrib>Igaue, F.</creatorcontrib><creatorcontrib>Yamamoto, K.</creatorcontrib><creatorcontrib>Mattausch, H.J.</creatorcontrib><creatorcontrib>Koide, T.</creatorcontrib><creatorcontrib>Amo, A.</creatorcontrib><creatorcontrib>Hachisuka, A.</creatorcontrib><creatorcontrib>Soeda, S.</creatorcontrib><creatorcontrib>Hayashi, I.</creatorcontrib><creatorcontrib>Morishita, F.</creatorcontrib><creatorcontrib>Dosaka, K.</creatorcontrib><creatorcontrib>Arimoto, K.</creatorcontrib><creatorcontrib>Fujishima, K.</creatorcontrib><creatorcontrib>Anami, K.</creatorcontrib><creatorcontrib>Yoshihara, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Noda, H.</au><au>Inoue, K.</au><au>Kuroiwa, M.</au><au>Igaue, F.</au><au>Yamamoto, K.</au><au>Mattausch, H.J.</au><au>Koide, T.</au><au>Amo, A.</au><au>Hachisuka, A.</au><au>Soeda, S.</au><au>Hayashi, I.</au><au>Morishita, F.</au><au>Dosaka, K.</au><au>Arimoto, K.</au><au>Fujishima, K.</au><au>Anami, K.</au><au>Yoshihara, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A cost-efficient high-performance dynamic TCAM with pipelined hierarchical searching and shift redundancy architecture</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2005-01</date><risdate>2005</risdate><volume>40</volume><issue>1</issue><spage>245</spage><epage>253</epage><pages>245-253</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>This paper describes a 4.5-Mb dynamic ternary CAM (DTCAM) which is suitable for networking applications. A dynamic TCAM cell structure in 130-nm embedded DRAM technology is used to realize the small cell size of 3.59 /spl mu/m/sup 2/. In addition, a novel array architecture of TCAM, the pipelined hierarchical searching (PHS) architecture, is proposed. The PHS architecture is found to be suitable for realizing small area penalty, high-throughput searching and low-voltage operation simultaneously. With the combination of the DTCAM cell and the PHS architecture, small silicon area of 32 mm/sup 2/ for a fabricated 4.5-Mb DTCAM chip, high performance of 143 M searches per second and low power dissipation of 1.1 W have been achieved. To improve the yield of TCAMs, a novel shift redundancy technique is applied and estimated to result in 3.6-times yield improvement. These techniques and architectures described in this report are attractive for realizing cost-efficient, large-scale, high-performance TCAM chips.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JSSC.2004.838016</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2005-01, Vol.40 (1), p.245-253
issn 0018-9200
1558-173X
language eng
recordid cdi_ieee_primary_1375008
source IEEE Electronic Library (IEL)
subjects Applied sciences
Architecture
Arrays
CADCAM
Chip formation
Chips
Circuits
CMOS memory integrated circuits
Computer aided manufacturing
Costs
Design. Technologies. Operation analysis. Testing
Dynamics
Electronics
embedded DRAM
Exact sciences and technology
Integrated circuit yield
Integrated circuits
Integrated circuits by function (including memories and processors)
Large-scale systems
network
Power dissipation
Random access memory
Redundancy
Searching
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Silicon
ternary CAM
Yield estimation
title A cost-efficient high-performance dynamic TCAM with pipelined hierarchical searching and shift redundancy architecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20cost-efficient%20high-performance%20dynamic%20TCAM%20with%20pipelined%20hierarchical%20searching%20and%20shift%20redundancy%20architecture&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Noda,%20H.&rft.date=2005-01&rft.volume=40&rft.issue=1&rft.spage=245&rft.epage=253&rft.pages=245-253&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2004.838016&rft_dat=%3Cproquest_RIE%3E27991709%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911980586&rft_id=info:pmid/&rft_ieee_id=1375008&rfr_iscdi=true