Training AIBO like a dog - preliminary results

This work describes a method to facilitate human adaptation to a pet robot. A pet robot learns which behavior it could execute when stimulus are given and a human user learns how to give commands to the robot through its various sensors. A pet robot utilizes a computational classical conditioning mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Seiji, Y., Tomohiro, Y.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 436
container_issue
container_start_page 431
container_title
container_volume
creator Seiji, Y.
Tomohiro, Y.
description This work describes a method to facilitate human adaptation to a pet robot. A pet robot learns which behavior it could execute when stimulus are given and a human user learns how to give commands to the robot through its various sensors. A pet robot utilizes a computational classical conditioning model for learning to interpret human's commands. We propose and implement such a mutual adaptation framework, and develop like-dog heuristics to facilitate the human's adaptation to a pet robot AIBO. Finally we evaluate the heuristics through preliminary experiments.
doi_str_mv 10.1109/ROMAN.2004.1374799
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_1374799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1374799</ieee_id><sourcerecordid>17344355</sourcerecordid><originalsourceid>FETCH-LOGICAL-i179t-703c9d6720e02a2f67d8081366345149d7e48d1e1999555fff198d97f2ca502f3</originalsourceid><addsrcrecordid>eNpFj09LxDAUxAMiqOt-Ab3k4rH1vfzpa4510XVhtSDreQlNskS7tSTrwW9voYJzmcP8GGYYu0EoEcHcv7UvzWspAFSJkhQZc8augGqQtSbQF2yZ8wdMkqZCQZes3CUbhzgceLN5aHkfPz233H0deMHH5Pt4jINNPzz5_N2f8jU7D7bPfvnnC_b-9LhbPRfbdr1ZNdsiIplTQSA74yoS4EFYESpyNdQoq0oqjco48qp26NEYo7UOIaCpnaEgOqtBBLlgd3PvaHNn-5Ds0MW8H1M8Tmv2SFIpqfXE3c5c9N7_x_N1-Qt81kwB</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Training AIBO like a dog - preliminary results</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Seiji, Y. ; Tomohiro, Y.</creator><creatorcontrib>Seiji, Y. ; Tomohiro, Y.</creatorcontrib><description>This work describes a method to facilitate human adaptation to a pet robot. A pet robot learns which behavior it could execute when stimulus are given and a human user learns how to give commands to the robot through its various sensors. A pet robot utilizes a computational classical conditioning model for learning to interpret human's commands. We propose and implement such a mutual adaptation framework, and develop like-dog heuristics to facilitate the human's adaptation to a pet robot AIBO. Finally we evaluate the heuristics through preliminary experiments.</description><identifier>ISBN: 0780385705</identifier><identifier>ISBN: 9780780385702</identifier><identifier>DOI: 10.1109/ROMAN.2004.1374799</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Algorithm design and analysis ; Applied sciences ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Control theory. Systems ; Educational institutions ; Educational robots ; Exact sciences and technology ; Human robot interaction ; Humanoid robots ; Informatics ; Positron emission tomography ; Robot sensing systems ; Robotics ; Software ; Tactile sensors ; Temperature sensors</subject><ispartof>RO-MAN 2004. 13th IEEE International Workshop on Robot and Human Interactive Communication (IEEE Catalog No.04TH8759), 2004, p.431-436</ispartof><rights>2006 INIST-CNRS</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1374799$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1374799$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17344355$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Seiji, Y.</creatorcontrib><creatorcontrib>Tomohiro, Y.</creatorcontrib><title>Training AIBO like a dog - preliminary results</title><title>RO-MAN 2004. 13th IEEE International Workshop on Robot and Human Interactive Communication (IEEE Catalog No.04TH8759)</title><addtitle>ROMAN</addtitle><description>This work describes a method to facilitate human adaptation to a pet robot. A pet robot learns which behavior it could execute when stimulus are given and a human user learns how to give commands to the robot through its various sensors. A pet robot utilizes a computational classical conditioning model for learning to interpret human's commands. We propose and implement such a mutual adaptation framework, and develop like-dog heuristics to facilitate the human's adaptation to a pet robot AIBO. Finally we evaluate the heuristics through preliminary experiments.</description><subject>Algorithm design and analysis</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Control theory. Systems</subject><subject>Educational institutions</subject><subject>Educational robots</subject><subject>Exact sciences and technology</subject><subject>Human robot interaction</subject><subject>Humanoid robots</subject><subject>Informatics</subject><subject>Positron emission tomography</subject><subject>Robot sensing systems</subject><subject>Robotics</subject><subject>Software</subject><subject>Tactile sensors</subject><subject>Temperature sensors</subject><isbn>0780385705</isbn><isbn>9780780385702</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj09LxDAUxAMiqOt-Ab3k4rH1vfzpa4510XVhtSDreQlNskS7tSTrwW9voYJzmcP8GGYYu0EoEcHcv7UvzWspAFSJkhQZc8augGqQtSbQF2yZ8wdMkqZCQZes3CUbhzgceLN5aHkfPz233H0deMHH5Pt4jINNPzz5_N2f8jU7D7bPfvnnC_b-9LhbPRfbdr1ZNdsiIplTQSA74yoS4EFYESpyNdQoq0oqjco48qp26NEYo7UOIaCpnaEgOqtBBLlgd3PvaHNn-5Ds0MW8H1M8Tmv2SFIpqfXE3c5c9N7_x_N1-Qt81kwB</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Seiji, Y.</creator><creator>Tomohiro, Y.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Training AIBO like a dog - preliminary results</title><author>Seiji, Y. ; Tomohiro, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i179t-703c9d6720e02a2f67d8081366345149d7e48d1e1999555fff198d97f2ca502f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithm design and analysis</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Control theory. Systems</topic><topic>Educational institutions</topic><topic>Educational robots</topic><topic>Exact sciences and technology</topic><topic>Human robot interaction</topic><topic>Humanoid robots</topic><topic>Informatics</topic><topic>Positron emission tomography</topic><topic>Robot sensing systems</topic><topic>Robotics</topic><topic>Software</topic><topic>Tactile sensors</topic><topic>Temperature sensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Seiji, Y.</creatorcontrib><creatorcontrib>Tomohiro, Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seiji, Y.</au><au>Tomohiro, Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Training AIBO like a dog - preliminary results</atitle><btitle>RO-MAN 2004. 13th IEEE International Workshop on Robot and Human Interactive Communication (IEEE Catalog No.04TH8759)</btitle><stitle>ROMAN</stitle><date>2004</date><risdate>2004</risdate><spage>431</spage><epage>436</epage><pages>431-436</pages><isbn>0780385705</isbn><isbn>9780780385702</isbn><abstract>This work describes a method to facilitate human adaptation to a pet robot. A pet robot learns which behavior it could execute when stimulus are given and a human user learns how to give commands to the robot through its various sensors. A pet robot utilizes a computational classical conditioning model for learning to interpret human's commands. We propose and implement such a mutual adaptation framework, and develop like-dog heuristics to facilitate the human's adaptation to a pet robot AIBO. Finally we evaluate the heuristics through preliminary experiments.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/ROMAN.2004.1374799</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780385705
ispartof RO-MAN 2004. 13th IEEE International Workshop on Robot and Human Interactive Communication (IEEE Catalog No.04TH8759), 2004, p.431-436
issn
language eng
recordid cdi_ieee_primary_1374799
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Applied sciences
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Control theory. Systems
Educational institutions
Educational robots
Exact sciences and technology
Human robot interaction
Humanoid robots
Informatics
Positron emission tomography
Robot sensing systems
Robotics
Software
Tactile sensors
Temperature sensors
title Training AIBO like a dog - preliminary results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A23%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Training%20AIBO%20like%20a%20dog%20-%20preliminary%20results&rft.btitle=RO-MAN%202004.%2013th%20IEEE%20International%20Workshop%20on%20Robot%20and%20Human%20Interactive%20Communication%20(IEEE%20Catalog%20No.04TH8759)&rft.au=Seiji,%20Y.&rft.date=2004&rft.spage=431&rft.epage=436&rft.pages=431-436&rft.isbn=0780385705&rft.isbn_list=9780780385702&rft_id=info:doi/10.1109/ROMAN.2004.1374799&rft_dat=%3Cpascalfrancis_6IE%3E17344355%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1374799&rfr_iscdi=true