A scalable algorithm for mining maximal frequent sequences using sampling
We propose an efficient scalable algorithm for mining Maximal Sequential Patterns using Sampling (MSPS). The MSPS algorithm reduces much more search space than other algorithms because both the subsequence infrequency based pruning and the supersequence frequency based pruning are applied. In MSPS,...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 165 |
---|---|
container_issue | |
container_start_page | 156 |
container_title | |
container_volume | |
creator | Luo, C. Chung, S.M. |
description | We propose an efficient scalable algorithm for mining Maximal Sequential Patterns using Sampling (MSPS). The MSPS algorithm reduces much more search space than other algorithms because both the subsequence infrequency based pruning and the supersequence frequency based pruning are applied. In MSPS, sampling technique is used to identify long frequent sequences earlier, instead of enumerating all their subsequences. We propose how to adjust the user-specified minimum support level for mining a sample of the database to achieve better performance. This method makes sampling more efficient when the minimum support is small. A signature technique is utilized for the subsequence infrequency based pruning when the seed set of frequent sequences for the candidate generation is too big to be loaded into memory. A prefix tree structure is developed to count the candidate sequences of different sizes during the database scanning, and it also facilitates the customer sequence trimming. Our experiments showed MSPS has very good performance and better scalability than other algorithms. |
doi_str_mv | 10.1109/ICTAI.2004.16 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_1374182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1374182</ieee_id><sourcerecordid>19103830</sourcerecordid><originalsourceid>FETCH-LOGICAL-i205t-fd69b11c33fb651b938ee86584fcacb3214de6e907455aea1d9695d9ad3e1e8c3</originalsourceid><addsrcrecordid>eNpFj0tLA0EQhAcfYIg5evIyF48bu-c9xxB8LAS8xHOYne2NI7ubuJOA_ns3KliXKuiPpoqxG4Q5Ivj7crlelHMBoOZozthESKsLQG_P2cxbB9Z4LYQ06oJNEJwopAJ_xWY5v8MoDRa8mbBywXMMbaha4qHd7oZ0eOt4sxt4l_rUb3kXPlMXWt4M9HGk_sDzj0fK_JhPQA7dvh3DNbtsQptp9udT9vr4sF4-F6uXp3K5WBVJgD4UTW18hRilbCqjsfLSETmjnWpiiJUUqGoy5MEqrQMFrP24pPahloTkopyyu9-_-3Bq3gyhjylv9sNYc_jaoEeQTsLI3f5yiYj-z9IqdEJ-A8gtXDY</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A scalable algorithm for mining maximal frequent sequences using sampling</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Luo, C. ; Chung, S.M.</creator><creatorcontrib>Luo, C. ; Chung, S.M.</creatorcontrib><description>We propose an efficient scalable algorithm for mining Maximal Sequential Patterns using Sampling (MSPS). The MSPS algorithm reduces much more search space than other algorithms because both the subsequence infrequency based pruning and the supersequence frequency based pruning are applied. In MSPS, sampling technique is used to identify long frequent sequences earlier, instead of enumerating all their subsequences. We propose how to adjust the user-specified minimum support level for mining a sample of the database to achieve better performance. This method makes sampling more efficient when the minimum support is small. A signature technique is utilized for the subsequence infrequency based pruning when the seed set of frequent sequences for the candidate generation is too big to be loaded into memory. A prefix tree structure is developed to count the candidate sequences of different sizes during the database scanning, and it also facilitates the customer sequence trimming. Our experiments showed MSPS has very good performance and better scalability than other algorithms.</description><identifier>ISSN: 1082-3409</identifier><identifier>ISBN: 9780769522364</identifier><identifier>ISBN: 076952236X</identifier><identifier>EISSN: 2375-0197</identifier><identifier>DOI: 10.1109/ICTAI.2004.16</identifier><language>eng</language><publisher>Los Alamitos CA: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Association rules ; Computer science ; Computer science; control theory; systems ; Costs ; Data analysis ; Data mining ; Exact sciences and technology ; Frequency ; Sampling methods ; Scalability ; Tree data structures</subject><ispartof>16th IEEE International Conference on Tools with Artificial Intelligence, 2004, p.156-165</ispartof><rights>2007 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1374182$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1374182$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19103830$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, C.</creatorcontrib><creatorcontrib>Chung, S.M.</creatorcontrib><title>A scalable algorithm for mining maximal frequent sequences using sampling</title><title>16th IEEE International Conference on Tools with Artificial Intelligence</title><addtitle>TAI</addtitle><description>We propose an efficient scalable algorithm for mining Maximal Sequential Patterns using Sampling (MSPS). The MSPS algorithm reduces much more search space than other algorithms because both the subsequence infrequency based pruning and the supersequence frequency based pruning are applied. In MSPS, sampling technique is used to identify long frequent sequences earlier, instead of enumerating all their subsequences. We propose how to adjust the user-specified minimum support level for mining a sample of the database to achieve better performance. This method makes sampling more efficient when the minimum support is small. A signature technique is utilized for the subsequence infrequency based pruning when the seed set of frequent sequences for the candidate generation is too big to be loaded into memory. A prefix tree structure is developed to count the candidate sequences of different sizes during the database scanning, and it also facilitates the customer sequence trimming. Our experiments showed MSPS has very good performance and better scalability than other algorithms.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Association rules</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Costs</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Exact sciences and technology</subject><subject>Frequency</subject><subject>Sampling methods</subject><subject>Scalability</subject><subject>Tree data structures</subject><issn>1082-3409</issn><issn>2375-0197</issn><isbn>9780769522364</isbn><isbn>076952236X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj0tLA0EQhAcfYIg5evIyF48bu-c9xxB8LAS8xHOYne2NI7ubuJOA_ns3KliXKuiPpoqxG4Q5Ivj7crlelHMBoOZozthESKsLQG_P2cxbB9Z4LYQ06oJNEJwopAJ_xWY5v8MoDRa8mbBywXMMbaha4qHd7oZ0eOt4sxt4l_rUb3kXPlMXWt4M9HGk_sDzj0fK_JhPQA7dvh3DNbtsQptp9udT9vr4sF4-F6uXp3K5WBVJgD4UTW18hRilbCqjsfLSETmjnWpiiJUUqGoy5MEqrQMFrP24pPahloTkopyyu9-_-3Bq3gyhjylv9sNYc_jaoEeQTsLI3f5yiYj-z9IqdEJ-A8gtXDY</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Luo, C.</creator><creator>Chung, S.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>A scalable algorithm for mining maximal frequent sequences using sampling</title><author>Luo, C. ; Chung, S.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i205t-fd69b11c33fb651b938ee86584fcacb3214de6e907455aea1d9695d9ad3e1e8c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Association rules</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Costs</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Exact sciences and technology</topic><topic>Frequency</topic><topic>Sampling methods</topic><topic>Scalability</topic><topic>Tree data structures</topic><toplevel>online_resources</toplevel><creatorcontrib>Luo, C.</creatorcontrib><creatorcontrib>Chung, S.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Luo, C.</au><au>Chung, S.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A scalable algorithm for mining maximal frequent sequences using sampling</atitle><btitle>16th IEEE International Conference on Tools with Artificial Intelligence</btitle><stitle>TAI</stitle><date>2004</date><risdate>2004</risdate><spage>156</spage><epage>165</epage><pages>156-165</pages><issn>1082-3409</issn><eissn>2375-0197</eissn><isbn>9780769522364</isbn><isbn>076952236X</isbn><abstract>We propose an efficient scalable algorithm for mining Maximal Sequential Patterns using Sampling (MSPS). The MSPS algorithm reduces much more search space than other algorithms because both the subsequence infrequency based pruning and the supersequence frequency based pruning are applied. In MSPS, sampling technique is used to identify long frequent sequences earlier, instead of enumerating all their subsequences. We propose how to adjust the user-specified minimum support level for mining a sample of the database to achieve better performance. This method makes sampling more efficient when the minimum support is small. A signature technique is utilized for the subsequence infrequency based pruning when the seed set of frequent sequences for the candidate generation is too big to be loaded into memory. A prefix tree structure is developed to count the candidate sequences of different sizes during the database scanning, and it also facilitates the customer sequence trimming. Our experiments showed MSPS has very good performance and better scalability than other algorithms.</abstract><cop>Los Alamitos CA</cop><pub>IEEE</pub><doi>10.1109/ICTAI.2004.16</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1082-3409 |
ispartof | 16th IEEE International Conference on Tools with Artificial Intelligence, 2004, p.156-165 |
issn | 1082-3409 2375-0197 |
language | eng |
recordid | cdi_ieee_primary_1374182 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Applied sciences Artificial intelligence Association rules Computer science Computer science control theory systems Costs Data analysis Data mining Exact sciences and technology Frequency Sampling methods Scalability Tree data structures |
title | A scalable algorithm for mining maximal frequent sequences using sampling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A17%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20scalable%20algorithm%20for%20mining%20maximal%20frequent%20sequences%20using%20sampling&rft.btitle=16th%20IEEE%20International%20Conference%20on%20Tools%20with%20Artificial%20Intelligence&rft.au=Luo,%20C.&rft.date=2004&rft.spage=156&rft.epage=165&rft.pages=156-165&rft.issn=1082-3409&rft.eissn=2375-0197&rft.isbn=9780769522364&rft.isbn_list=076952236X&rft_id=info:doi/10.1109/ICTAI.2004.16&rft_dat=%3Cpascalfrancis_6IE%3E19103830%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1374182&rfr_iscdi=true |