Analyzing losses from hazard exposure: a conservative probabilistic estimate using supply chain risk simulation

We present a supply chain risk analysis that is based on a Monte Carlo simulation of a generalized semi-Markov process (G.S.M.P.) model. Specifically, we seek to estimate the probability distribution of supply chain losses caused by disruptions. This distribution is computed conditional on conservat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Deleris, L.A., Elkins, D., Pate-Cornell, M.E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1391 vol.2
container_issue
container_start_page 1384
container_title
container_volume 2
creator Deleris, L.A.
Elkins, D.
Pate-Cornell, M.E.
description We present a supply chain risk analysis that is based on a Monte Carlo simulation of a generalized semi-Markov process (G.S.M.P.) model. Specifically, we seek to estimate the probability distribution of supply chain losses caused by disruptions. This distribution is computed conditional on conservative hypotheses which are the following: (1) no additional risk reduction measures are implemented beyond those already in place, (2) all the products whose production has been canceled are counted as losses at their market value. The simulation thus yields conditional probabilities of loss levels that firms may reasonably use in the evaluation of business interruption costs and insurance coverage limits. The model also enables the comparison of supply chain designs based on their resilience in recovering from risk events. The approach is novel for it connects stochastic modeling of risks from an insurance perspective with supply chain network design.
doi_str_mv 10.1109/WSC.2004.1371476
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1371476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1371476</ieee_id><sourcerecordid>1371476</sourcerecordid><originalsourceid>FETCH-LOGICAL-i626-2eed61f71e02b17f9f029bffa3c25698ec4e9d997fdcc93cc0d736de6e8714de3</originalsourceid><addsrcrecordid>eNotUE1LAzEUDIig1N4FL_kDXfOxJhtvZfGjUPBgwWPJJi82ut0sebvF9te7Yh_DzGmGmUfILWcF58zcf7zXhWCsLLjUvNTqgsyNrtgEWelK6SsyR_xi0xldltJck7TsbHs8xe6TtgkRkIac9nRnTzZ7Cj99wjHDI7XUpQ4hH-wQD0D7nBrbxDbiEB2Fifd2ADriXxCOfd8eqdvZ2NEc8Zti3I_t5EzdDbkMtkWYn3VGNs9Pm_p1sX57WdXL9SIqoRYCwCseNAcmGq6DCUyYJgQrnXhQpgJXgvHG6OCdM9I55rVUHhRU024Pckbu_mMjAGz7PNXLx-35K_IXoDJbsw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Analyzing losses from hazard exposure: a conservative probabilistic estimate using supply chain risk simulation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Deleris, L.A. ; Elkins, D. ; Pate-Cornell, M.E.</creator><creatorcontrib>Deleris, L.A. ; Elkins, D. ; Pate-Cornell, M.E.</creatorcontrib><description>We present a supply chain risk analysis that is based on a Monte Carlo simulation of a generalized semi-Markov process (G.S.M.P.) model. Specifically, we seek to estimate the probability distribution of supply chain losses caused by disruptions. This distribution is computed conditional on conservative hypotheses which are the following: (1) no additional risk reduction measures are implemented beyond those already in place, (2) all the products whose production has been canceled are counted as losses at their market value. The simulation thus yields conditional probabilities of loss levels that firms may reasonably use in the evaluation of business interruption costs and insurance coverage limits. The model also enables the comparison of supply chain designs based on their resilience in recovering from risk events. The approach is novel for it connects stochastic modeling of risks from an insurance perspective with supply chain network design.</description><identifier>ISBN: 9780780387867</identifier><identifier>ISBN: 0780387864</identifier><identifier>DOI: 10.1109/WSC.2004.1371476</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Computational modeling ; Distributed computing ; Hazards ; Insurance ; Loss measurement ; Probability distribution ; Risk analysis ; Risk management ; Supply chains</subject><ispartof>Proceedings of the 2004 Winter Simulation Conference, 2004, 2004, Vol.2, p.1384-1391 vol.2</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1371476$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1371476$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Deleris, L.A.</creatorcontrib><creatorcontrib>Elkins, D.</creatorcontrib><creatorcontrib>Pate-Cornell, M.E.</creatorcontrib><title>Analyzing losses from hazard exposure: a conservative probabilistic estimate using supply chain risk simulation</title><title>Proceedings of the 2004 Winter Simulation Conference, 2004</title><addtitle>WSC</addtitle><description>We present a supply chain risk analysis that is based on a Monte Carlo simulation of a generalized semi-Markov process (G.S.M.P.) model. Specifically, we seek to estimate the probability distribution of supply chain losses caused by disruptions. This distribution is computed conditional on conservative hypotheses which are the following: (1) no additional risk reduction measures are implemented beyond those already in place, (2) all the products whose production has been canceled are counted as losses at their market value. The simulation thus yields conditional probabilities of loss levels that firms may reasonably use in the evaluation of business interruption costs and insurance coverage limits. The model also enables the comparison of supply chain designs based on their resilience in recovering from risk events. The approach is novel for it connects stochastic modeling of risks from an insurance perspective with supply chain network design.</description><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Distributed computing</subject><subject>Hazards</subject><subject>Insurance</subject><subject>Loss measurement</subject><subject>Probability distribution</subject><subject>Risk analysis</subject><subject>Risk management</subject><subject>Supply chains</subject><isbn>9780780387867</isbn><isbn>0780387864</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUE1LAzEUDIig1N4FL_kDXfOxJhtvZfGjUPBgwWPJJi82ut0sebvF9te7Yh_DzGmGmUfILWcF58zcf7zXhWCsLLjUvNTqgsyNrtgEWelK6SsyR_xi0xldltJck7TsbHs8xe6TtgkRkIac9nRnTzZ7Cj99wjHDI7XUpQ4hH-wQD0D7nBrbxDbiEB2Fifd2ADriXxCOfd8eqdvZ2NEc8Zti3I_t5EzdDbkMtkWYn3VGNs9Pm_p1sX57WdXL9SIqoRYCwCseNAcmGq6DCUyYJgQrnXhQpgJXgvHG6OCdM9I55rVUHhRU024Pckbu_mMjAGz7PNXLx-35K_IXoDJbsw</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Deleris, L.A.</creator><creator>Elkins, D.</creator><creator>Pate-Cornell, M.E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2004</creationdate><title>Analyzing losses from hazard exposure: a conservative probabilistic estimate using supply chain risk simulation</title><author>Deleris, L.A. ; Elkins, D. ; Pate-Cornell, M.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i626-2eed61f71e02b17f9f029bffa3c25698ec4e9d997fdcc93cc0d736de6e8714de3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Distributed computing</topic><topic>Hazards</topic><topic>Insurance</topic><topic>Loss measurement</topic><topic>Probability distribution</topic><topic>Risk analysis</topic><topic>Risk management</topic><topic>Supply chains</topic><toplevel>online_resources</toplevel><creatorcontrib>Deleris, L.A.</creatorcontrib><creatorcontrib>Elkins, D.</creatorcontrib><creatorcontrib>Pate-Cornell, M.E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Deleris, L.A.</au><au>Elkins, D.</au><au>Pate-Cornell, M.E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Analyzing losses from hazard exposure: a conservative probabilistic estimate using supply chain risk simulation</atitle><btitle>Proceedings of the 2004 Winter Simulation Conference, 2004</btitle><stitle>WSC</stitle><date>2004</date><risdate>2004</risdate><volume>2</volume><spage>1384</spage><epage>1391 vol.2</epage><pages>1384-1391 vol.2</pages><isbn>9780780387867</isbn><isbn>0780387864</isbn><abstract>We present a supply chain risk analysis that is based on a Monte Carlo simulation of a generalized semi-Markov process (G.S.M.P.) model. Specifically, we seek to estimate the probability distribution of supply chain losses caused by disruptions. This distribution is computed conditional on conservative hypotheses which are the following: (1) no additional risk reduction measures are implemented beyond those already in place, (2) all the products whose production has been canceled are counted as losses at their market value. The simulation thus yields conditional probabilities of loss levels that firms may reasonably use in the evaluation of business interruption costs and insurance coverage limits. The model also enables the comparison of supply chain designs based on their resilience in recovering from risk events. The approach is novel for it connects stochastic modeling of risks from an insurance perspective with supply chain network design.</abstract><pub>IEEE</pub><doi>10.1109/WSC.2004.1371476</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780387867
ispartof Proceedings of the 2004 Winter Simulation Conference, 2004, 2004, Vol.2, p.1384-1391 vol.2
issn
language eng
recordid cdi_ieee_primary_1371476
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Analytical models
Computational modeling
Distributed computing
Hazards
Insurance
Loss measurement
Probability distribution
Risk analysis
Risk management
Supply chains
title Analyzing losses from hazard exposure: a conservative probabilistic estimate using supply chain risk simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Analyzing%20losses%20from%20hazard%20exposure:%20a%20conservative%20probabilistic%20estimate%20using%20supply%20chain%20risk%20simulation&rft.btitle=Proceedings%20of%20the%202004%20Winter%20Simulation%20Conference,%202004&rft.au=Deleris,%20L.A.&rft.date=2004&rft.volume=2&rft.spage=1384&rft.epage=1391%20vol.2&rft.pages=1384-1391%20vol.2&rft.isbn=9780780387867&rft.isbn_list=0780387864&rft_id=info:doi/10.1109/WSC.2004.1371476&rft_dat=%3Cieee_6IE%3E1371476%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1371476&rfr_iscdi=true