A process distribution approach for multisensor data fusion systems based on geographical dataspace partitioning
In this work, we present a new approach to distributed sensor data fusion (SDF) systems in multitarget tracking, called TSDF (Tessellated SDF), centered around a geographical partitioning (tessellation) of the data. A functional decomposition divides SDF into components that can be assigned to proce...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on parallel and distributed systems 2005-01, Vol.16 (1), p.14-23 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23 |
---|---|
container_issue | 1 |
container_start_page | 14 |
container_title | IEEE transactions on parallel and distributed systems |
container_volume | 16 |
creator | Storms, P.P.A. van Veelen, J.B. Boasson, E. |
description | In this work, we present a new approach to distributed sensor data fusion (SDF) systems in multitarget tracking, called TSDF (Tessellated SDF), centered around a geographical partitioning (tessellation) of the data. A functional decomposition divides SDF into components that can be assigned to processing units, parallelizing the processing. The tessellation implicitly defines the set of tracks potentially yielding correlations with the sensor plots (observations) in a tile. Some tracks may occur as correlation candidates for multiple tiles. Conflicts caused by correlations of such tracks with plots in different tiles, are resolved by combining all involved tracks and plots into independent data association problems. The benefit of the TSDF approach to a clustering-based process distribution is independence of the problem space, which yields better scalability and manageability characteristics. The TSDF approach allows scaling in more than one way. It allows SDF for single sensor, multiple sensors on a single platform, and even for multiple sensors on multiple platforms. It also provides the flexibility to scale the processing to the size of the problem. This enables a better control of the throughput, to meet various timing constraints. |
doi_str_mv | 10.1109/TPDS.2005.3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1363749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1363749</ieee_id><sourcerecordid>28073864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-77f31bdf36b2014884d51128c7e7e5beaba348a638195f412681903bd913ce763</originalsourceid><addsrcrecordid>eNpd0MtLxDAQBvAiCq6rJ49eggcv0jXT9JEeF9-woOB6Dmk63c3Sl5n2sP-9qSsInvIx_BgmXxBcAl8A8Pxu_f7wsYg4TxbiKJhBksgwAimOfeZxEuYR5KfBGdGOc4gTHs-Cfsl61xkkYqWlwdliHGzXMt37sTZbVnWONWM9WMKWfC71oFk10oRoTwM2xApNWDI_2GC3cbrfWqPrH0m9Nsh67QY7rbXt5jw4qXRNePH7zoPPp8f1_Uu4ent-vV-uQiMAhjDLKgFFWYm0iPytUsZlAhBJk2GGSYG60CKWOhUS8qSKIUp94KIocxAGs1TMg5vDXv-PrxFpUI0lg3WtW-xGUpHkmZBp7OH1P7jrRtf621QecQG5L9Cj2wMyriNyWKne2Ua7vQKupurVVL2aqleTvjpoi4h_UqQii3PxDbDQgLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920319183</pqid></control><display><type>article</type><title>A process distribution approach for multisensor data fusion systems based on geographical dataspace partitioning</title><source>IEEE Electronic Library (IEL)</source><creator>Storms, P.P.A. ; van Veelen, J.B. ; Boasson, E.</creator><creatorcontrib>Storms, P.P.A. ; van Veelen, J.B. ; Boasson, E.</creatorcontrib><description>In this work, we present a new approach to distributed sensor data fusion (SDF) systems in multitarget tracking, called TSDF (Tessellated SDF), centered around a geographical partitioning (tessellation) of the data. A functional decomposition divides SDF into components that can be assigned to processing units, parallelizing the processing. The tessellation implicitly defines the set of tracks potentially yielding correlations with the sensor plots (observations) in a tile. Some tracks may occur as correlation candidates for multiple tiles. Conflicts caused by correlations of such tracks with plots in different tiles, are resolved by combining all involved tracks and plots into independent data association problems. The benefit of the TSDF approach to a clustering-based process distribution is independence of the problem space, which yields better scalability and manageability characteristics. The TSDF approach allows scaling in more than one way. It allows SDF for single sensor, multiple sensors on a single platform, and even for multiple sensors on multiple platforms. It also provides the flexibility to scale the processing to the size of the problem. This enables a better control of the throughput, to meet various timing constraints.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2005.3</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>command and control ; data models ; Distributed architectures ; Infrared sensors ; Radar tracking ; Scalability ; Sensor fusion ; Sensor phenomena and characterization ; Sensor systems ; Sensors ; Storms ; Studies ; Target tracking ; Throughput</subject><ispartof>IEEE transactions on parallel and distributed systems, 2005-01, Vol.16 (1), p.14-23</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-77f31bdf36b2014884d51128c7e7e5beaba348a638195f412681903bd913ce763</citedby><cites>FETCH-LOGICAL-c311t-77f31bdf36b2014884d51128c7e7e5beaba348a638195f412681903bd913ce763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1363749$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1363749$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Storms, P.P.A.</creatorcontrib><creatorcontrib>van Veelen, J.B.</creatorcontrib><creatorcontrib>Boasson, E.</creatorcontrib><title>A process distribution approach for multisensor data fusion systems based on geographical dataspace partitioning</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>In this work, we present a new approach to distributed sensor data fusion (SDF) systems in multitarget tracking, called TSDF (Tessellated SDF), centered around a geographical partitioning (tessellation) of the data. A functional decomposition divides SDF into components that can be assigned to processing units, parallelizing the processing. The tessellation implicitly defines the set of tracks potentially yielding correlations with the sensor plots (observations) in a tile. Some tracks may occur as correlation candidates for multiple tiles. Conflicts caused by correlations of such tracks with plots in different tiles, are resolved by combining all involved tracks and plots into independent data association problems. The benefit of the TSDF approach to a clustering-based process distribution is independence of the problem space, which yields better scalability and manageability characteristics. The TSDF approach allows scaling in more than one way. It allows SDF for single sensor, multiple sensors on a single platform, and even for multiple sensors on multiple platforms. It also provides the flexibility to scale the processing to the size of the problem. This enables a better control of the throughput, to meet various timing constraints.</description><subject>command and control</subject><subject>data models</subject><subject>Distributed architectures</subject><subject>Infrared sensors</subject><subject>Radar tracking</subject><subject>Scalability</subject><subject>Sensor fusion</subject><subject>Sensor phenomena and characterization</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Storms</subject><subject>Studies</subject><subject>Target tracking</subject><subject>Throughput</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0MtLxDAQBvAiCq6rJ49eggcv0jXT9JEeF9-woOB6Dmk63c3Sl5n2sP-9qSsInvIx_BgmXxBcAl8A8Pxu_f7wsYg4TxbiKJhBksgwAimOfeZxEuYR5KfBGdGOc4gTHs-Cfsl61xkkYqWlwdliHGzXMt37sTZbVnWONWM9WMKWfC71oFk10oRoTwM2xApNWDI_2GC3cbrfWqPrH0m9Nsh67QY7rbXt5jw4qXRNePH7zoPPp8f1_Uu4ent-vV-uQiMAhjDLKgFFWYm0iPytUsZlAhBJk2GGSYG60CKWOhUS8qSKIUp94KIocxAGs1TMg5vDXv-PrxFpUI0lg3WtW-xGUpHkmZBp7OH1P7jrRtf621QecQG5L9Cj2wMyriNyWKne2Ua7vQKupurVVL2aqleTvjpoi4h_UqQii3PxDbDQgLg</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Storms, P.P.A.</creator><creator>van Veelen, J.B.</creator><creator>Boasson, E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200501</creationdate><title>A process distribution approach for multisensor data fusion systems based on geographical dataspace partitioning</title><author>Storms, P.P.A. ; van Veelen, J.B. ; Boasson, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-77f31bdf36b2014884d51128c7e7e5beaba348a638195f412681903bd913ce763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>command and control</topic><topic>data models</topic><topic>Distributed architectures</topic><topic>Infrared sensors</topic><topic>Radar tracking</topic><topic>Scalability</topic><topic>Sensor fusion</topic><topic>Sensor phenomena and characterization</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Storms</topic><topic>Studies</topic><topic>Target tracking</topic><topic>Throughput</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Storms, P.P.A.</creatorcontrib><creatorcontrib>van Veelen, J.B.</creatorcontrib><creatorcontrib>Boasson, E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Storms, P.P.A.</au><au>van Veelen, J.B.</au><au>Boasson, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A process distribution approach for multisensor data fusion systems based on geographical dataspace partitioning</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2005-01</date><risdate>2005</risdate><volume>16</volume><issue>1</issue><spage>14</spage><epage>23</epage><pages>14-23</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>In this work, we present a new approach to distributed sensor data fusion (SDF) systems in multitarget tracking, called TSDF (Tessellated SDF), centered around a geographical partitioning (tessellation) of the data. A functional decomposition divides SDF into components that can be assigned to processing units, parallelizing the processing. The tessellation implicitly defines the set of tracks potentially yielding correlations with the sensor plots (observations) in a tile. Some tracks may occur as correlation candidates for multiple tiles. Conflicts caused by correlations of such tracks with plots in different tiles, are resolved by combining all involved tracks and plots into independent data association problems. The benefit of the TSDF approach to a clustering-based process distribution is independence of the problem space, which yields better scalability and manageability characteristics. The TSDF approach allows scaling in more than one way. It allows SDF for single sensor, multiple sensors on a single platform, and even for multiple sensors on multiple platforms. It also provides the flexibility to scale the processing to the size of the problem. This enables a better control of the throughput, to meet various timing constraints.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2005.3</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1045-9219 |
ispartof | IEEE transactions on parallel and distributed systems, 2005-01, Vol.16 (1), p.14-23 |
issn | 1045-9219 1558-2183 |
language | eng |
recordid | cdi_ieee_primary_1363749 |
source | IEEE Electronic Library (IEL) |
subjects | command and control data models Distributed architectures Infrared sensors Radar tracking Scalability Sensor fusion Sensor phenomena and characterization Sensor systems Sensors Storms Studies Target tracking Throughput |
title | A process distribution approach for multisensor data fusion systems based on geographical dataspace partitioning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20process%20distribution%20approach%20for%20multisensor%20data%20fusion%20systems%20based%20on%20geographical%20dataspace%20partitioning&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Storms,%20P.P.A.&rft.date=2005-01&rft.volume=16&rft.issue=1&rft.spage=14&rft.epage=23&rft.pages=14-23&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2005.3&rft_dat=%3Cproquest_RIE%3E28073864%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920319183&rft_id=info:pmid/&rft_ieee_id=1363749&rfr_iscdi=true |