PCA-based feature selection scheme for machine defect classification

The sensitivity of various features that are characteristic of a machine defect may vary considerably under different operating conditions. Hence it is critical to devise a systematic feature selection scheme that provides guidance on choosing the most representative features for defect classificati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2004-12, Vol.53 (6), p.1517-1525
Hauptverfasser: Malhi, A., Gao, R.X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1525
container_issue 6
container_start_page 1517
container_title IEEE transactions on instrumentation and measurement
container_volume 53
creator Malhi, A.
Gao, R.X.
description The sensitivity of various features that are characteristic of a machine defect may vary considerably under different operating conditions. Hence it is critical to devise a systematic feature selection scheme that provides guidance on choosing the most representative features for defect classification. This paper presents a feature selection scheme based on the principal component analysis (PCA) method. The effectiveness of the scheme was verified experimentally on a bearing test bed, using both supervised and unsupervised defect classification approaches. The objective of the study was to identify the severity level of bearing defects, where no a priori knowledge on the defect conditions was available. The proposed scheme has shown to provide more accurate defect classification with fewer feature inputs than using all features initially considered relevant. The result confirms its utility as an effective tool for machine health assessment.
doi_str_mv 10.1109/TIM.2004.834070
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1360091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1360091</ieee_id><sourcerecordid>2427982531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-57a00a6e6f8e8be9856103187005c0fbe339a0d94fb06c1ab73df4aeecbf89953</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EEqUwM7BEDGxpr-v4NVblVakIhjJbjnOtpsqj2MnAvydRkJCY7nC-c3T1EXJLYUEp6OV--7ZYAWQLxTKQcEZmlHOZaiFW52QGQFWqMy4uyVWMRwCQIpMz8vixWae5jVgkHm3XB0wiVui6sm2S6A5YY-LbkNTWHcoGkwL9ECausjGWvnR2BK_JhbdVxJvfOyefz0_7zWu6e3_Zbta71DHBu5RLC2AFCq9Q5agVFxQYVRKAO_A5MqYtFDrzOQhHbS5Z4TOL6HKvtOZsTh6m3VNov3qMnanL6LCqbINtH81KcZAKRvD-H3hs-9AMvxmlMtBKMzpAywlyoY0xoDenUNY2fBsKZlRqBqVmVGompUPjbmqUiPhHMwGgKfsBLE5xag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884098931</pqid></control><display><type>article</type><title>PCA-based feature selection scheme for machine defect classification</title><source>IEEE Electronic Library (IEL)</source><creator>Malhi, A. ; Gao, R.X.</creator><creatorcontrib>Malhi, A. ; Gao, R.X.</creatorcontrib><description>The sensitivity of various features that are characteristic of a machine defect may vary considerably under different operating conditions. Hence it is critical to devise a systematic feature selection scheme that provides guidance on choosing the most representative features for defect classification. This paper presents a feature selection scheme based on the principal component analysis (PCA) method. The effectiveness of the scheme was verified experimentally on a bearing test bed, using both supervised and unsupervised defect classification approaches. The objective of the study was to identify the severity level of bearing defects, where no a priori knowledge on the defect conditions was available. The proposed scheme has shown to provide more accurate defect classification with fewer feature inputs than using all features initially considered relevant. The result confirms its utility as an effective tool for machine health assessment.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2004.834070</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computerized monitoring ; Condition monitoring ; Costs ; Decision making ; Defect classification ; Fault diagnosis ; feature selection ; Manufacturing processes ; Neural networks ; Principal component analysis ; principal component analysis (PCA) ; Production ; Testing</subject><ispartof>IEEE transactions on instrumentation and measurement, 2004-12, Vol.53 (6), p.1517-1525</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-57a00a6e6f8e8be9856103187005c0fbe339a0d94fb06c1ab73df4aeecbf89953</citedby><cites>FETCH-LOGICAL-c365t-57a00a6e6f8e8be9856103187005c0fbe339a0d94fb06c1ab73df4aeecbf89953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1360091$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1360091$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Malhi, A.</creatorcontrib><creatorcontrib>Gao, R.X.</creatorcontrib><title>PCA-based feature selection scheme for machine defect classification</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>The sensitivity of various features that are characteristic of a machine defect may vary considerably under different operating conditions. Hence it is critical to devise a systematic feature selection scheme that provides guidance on choosing the most representative features for defect classification. This paper presents a feature selection scheme based on the principal component analysis (PCA) method. The effectiveness of the scheme was verified experimentally on a bearing test bed, using both supervised and unsupervised defect classification approaches. The objective of the study was to identify the severity level of bearing defects, where no a priori knowledge on the defect conditions was available. The proposed scheme has shown to provide more accurate defect classification with fewer feature inputs than using all features initially considered relevant. The result confirms its utility as an effective tool for machine health assessment.</description><subject>Computerized monitoring</subject><subject>Condition monitoring</subject><subject>Costs</subject><subject>Decision making</subject><subject>Defect classification</subject><subject>Fault diagnosis</subject><subject>feature selection</subject><subject>Manufacturing processes</subject><subject>Neural networks</subject><subject>Principal component analysis</subject><subject>principal component analysis (PCA)</subject><subject>Production</subject><subject>Testing</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkDtPwzAUhS0EEqUwM7BEDGxpr-v4NVblVakIhjJbjnOtpsqj2MnAvydRkJCY7nC-c3T1EXJLYUEp6OV--7ZYAWQLxTKQcEZmlHOZaiFW52QGQFWqMy4uyVWMRwCQIpMz8vixWae5jVgkHm3XB0wiVui6sm2S6A5YY-LbkNTWHcoGkwL9ECausjGWvnR2BK_JhbdVxJvfOyefz0_7zWu6e3_Zbta71DHBu5RLC2AFCq9Q5agVFxQYVRKAO_A5MqYtFDrzOQhHbS5Z4TOL6HKvtOZsTh6m3VNov3qMnanL6LCqbINtH81KcZAKRvD-H3hs-9AMvxmlMtBKMzpAywlyoY0xoDenUNY2fBsKZlRqBqVmVGompUPjbmqUiPhHMwGgKfsBLE5xag</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Malhi, A.</creator><creator>Gao, R.X.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20041201</creationdate><title>PCA-based feature selection scheme for machine defect classification</title><author>Malhi, A. ; Gao, R.X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-57a00a6e6f8e8be9856103187005c0fbe339a0d94fb06c1ab73df4aeecbf89953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Computerized monitoring</topic><topic>Condition monitoring</topic><topic>Costs</topic><topic>Decision making</topic><topic>Defect classification</topic><topic>Fault diagnosis</topic><topic>feature selection</topic><topic>Manufacturing processes</topic><topic>Neural networks</topic><topic>Principal component analysis</topic><topic>principal component analysis (PCA)</topic><topic>Production</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malhi, A.</creatorcontrib><creatorcontrib>Gao, R.X.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Malhi, A.</au><au>Gao, R.X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PCA-based feature selection scheme for machine defect classification</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2004-12-01</date><risdate>2004</risdate><volume>53</volume><issue>6</issue><spage>1517</spage><epage>1525</epage><pages>1517-1525</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>The sensitivity of various features that are characteristic of a machine defect may vary considerably under different operating conditions. Hence it is critical to devise a systematic feature selection scheme that provides guidance on choosing the most representative features for defect classification. This paper presents a feature selection scheme based on the principal component analysis (PCA) method. The effectiveness of the scheme was verified experimentally on a bearing test bed, using both supervised and unsupervised defect classification approaches. The objective of the study was to identify the severity level of bearing defects, where no a priori knowledge on the defect conditions was available. The proposed scheme has shown to provide more accurate defect classification with fewer feature inputs than using all features initially considered relevant. The result confirms its utility as an effective tool for machine health assessment.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2004.834070</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2004-12, Vol.53 (6), p.1517-1525
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_1360091
source IEEE Electronic Library (IEL)
subjects Computerized monitoring
Condition monitoring
Costs
Decision making
Defect classification
Fault diagnosis
feature selection
Manufacturing processes
Neural networks
Principal component analysis
principal component analysis (PCA)
Production
Testing
title PCA-based feature selection scheme for machine defect classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A39%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PCA-based%20feature%20selection%20scheme%20for%20machine%20defect%20classification&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Malhi,%20A.&rft.date=2004-12-01&rft.volume=53&rft.issue=6&rft.spage=1517&rft.epage=1525&rft.pages=1517-1525&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2004.834070&rft_dat=%3Cproquest_RIE%3E2427982531%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884098931&rft_id=info:pmid/&rft_ieee_id=1360091&rfr_iscdi=true