Modeling battery efficiency with parallel branches

Most contemporary battery models are series-models based on electrochemical principles. Describing the charge/discharge efficiency of a battery is a complex issue and of major importance in the design of control systems in future cars (combined 42 V and 14 V systems). Not only does battery efficienc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: de Koning, M.F., Veltman, A., van den Bosch, P.P.J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147 Vol.1
container_issue
container_start_page 141
container_title
container_volume 1
creator de Koning, M.F.
Veltman, A.
van den Bosch, P.P.J.
description Most contemporary battery models are series-models based on electrochemical principles. Describing the charge/discharge efficiency of a battery is a complex issue and of major importance in the design of control systems in future cars (combined 42 V and 14 V systems). Not only does battery efficiency strongly depend on current levels, it also varies greatly with frequency. In this paper a parallel equivalent model is introduced to get a good grip on this matter. A general description of efficiency as a function of frequency, current level and initial voltage is presented. The parallel model regards the battery as a system with multiple parallel buffers and yields a different perspective on the energy distribution and distribution of losses in a battery. Furthermore, dynamic behavior is easily explained. Depending on the spectral load and required accuracy, it is possible to simplify the parallel model. Identification techniques for both linear and nonlinear model identification are presented. It appears that the nonlinear parallel model is not capable of modeling the battery for the full frequency range. However, the identification techniques can be modified to apply to other model structures as well.
doi_str_mv 10.1109/PESC.2004.1355730
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_1355730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1355730</ieee_id><sourcerecordid>17457861</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-b1338c74af0c60e78641be13e28550bfd35e4597d2f4ef33083a83c7b0eb0f433</originalsourceid><addsrcrecordid>eNpFkE9LxDAUxIN_wLruBxAvvXhsfclLmuQoy64KKwrqeUnSFzdSa2kLst_eSgVhYA7zYwaGsUsOJedgb57XL6tSAMiSo1Ia4YhlArUuqorrY7a02sAkNGitPWEZCK0Ki1CdsfNh-ABQyEFlTDx-1dSk9j33bhypP-QUYwqJ2nDIv9O4zzvXu6ahJve9a8Oehgt2Gl0z0PLPF-xts35d3Rfbp7uH1e22SAJwLDxHNEFLFyFUQNpUknviSMIoBT7WqEgqq2sRJUVEMOgMBu2BPESJuGDXc2_nhuCa-Dufhl3Xp0_XH3ZcSzWV8om7mrlERP_xfAv-AHIfUu8</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modeling battery efficiency with parallel branches</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>de Koning, M.F. ; Veltman, A. ; van den Bosch, P.P.J.</creator><creatorcontrib>de Koning, M.F. ; Veltman, A. ; van den Bosch, P.P.J.</creatorcontrib><description>Most contemporary battery models are series-models based on electrochemical principles. Describing the charge/discharge efficiency of a battery is a complex issue and of major importance in the design of control systems in future cars (combined 42 V and 14 V systems). Not only does battery efficiency strongly depend on current levels, it also varies greatly with frequency. In this paper a parallel equivalent model is introduced to get a good grip on this matter. A general description of efficiency as a function of frequency, current level and initial voltage is presented. The parallel model regards the battery as a system with multiple parallel buffers and yields a different perspective on the energy distribution and distribution of losses in a battery. Furthermore, dynamic behavior is easily explained. Depending on the spectral load and required accuracy, it is possible to simplify the parallel model. Identification techniques for both linear and nonlinear model identification are presented. It appears that the nonlinear parallel model is not capable of modeling the battery for the full frequency range. However, the identification techniques can be modified to apply to other model structures as well.</description><identifier>ISSN: 0275-9306</identifier><identifier>ISBN: 9780780383999</identifier><identifier>ISBN: 0780383990</identifier><identifier>EISSN: 2377-6617</identifier><identifier>DOI: 10.1109/PESC.2004.1355730</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Applied sciences ; Batteries ; Capacitance ; Capacitors ; Control systems ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical machines ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Equivalent circuits ; Exact sciences and technology ; Frequency ; Ground, air and sea transportation, marine construction ; Impedance ; Nonlinear dynamical systems ; Power system modeling ; Regulation and control ; Road transportation and traffic ; Voltage</subject><ispartof>2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), 2004, Vol.1, p.141-147 Vol.1</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1355730$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,4049,4050,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1355730$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17457861$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>de Koning, M.F.</creatorcontrib><creatorcontrib>Veltman, A.</creatorcontrib><creatorcontrib>van den Bosch, P.P.J.</creatorcontrib><title>Modeling battery efficiency with parallel branches</title><title>2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551)</title><addtitle>PESC</addtitle><description>Most contemporary battery models are series-models based on electrochemical principles. Describing the charge/discharge efficiency of a battery is a complex issue and of major importance in the design of control systems in future cars (combined 42 V and 14 V systems). Not only does battery efficiency strongly depend on current levels, it also varies greatly with frequency. In this paper a parallel equivalent model is introduced to get a good grip on this matter. A general description of efficiency as a function of frequency, current level and initial voltage is presented. The parallel model regards the battery as a system with multiple parallel buffers and yields a different perspective on the energy distribution and distribution of losses in a battery. Furthermore, dynamic behavior is easily explained. Depending on the spectral load and required accuracy, it is possible to simplify the parallel model. Identification techniques for both linear and nonlinear model identification are presented. It appears that the nonlinear parallel model is not capable of modeling the battery for the full frequency range. However, the identification techniques can be modified to apply to other model structures as well.</description><subject>Applied sciences</subject><subject>Batteries</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>Control systems</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical machines</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Equivalent circuits</subject><subject>Exact sciences and technology</subject><subject>Frequency</subject><subject>Ground, air and sea transportation, marine construction</subject><subject>Impedance</subject><subject>Nonlinear dynamical systems</subject><subject>Power system modeling</subject><subject>Regulation and control</subject><subject>Road transportation and traffic</subject><subject>Voltage</subject><issn>0275-9306</issn><issn>2377-6617</issn><isbn>9780780383999</isbn><isbn>0780383990</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkE9LxDAUxIN_wLruBxAvvXhsfclLmuQoy64KKwrqeUnSFzdSa2kLst_eSgVhYA7zYwaGsUsOJedgb57XL6tSAMiSo1Ia4YhlArUuqorrY7a02sAkNGitPWEZCK0Ki1CdsfNh-ABQyEFlTDx-1dSk9j33bhypP-QUYwqJ2nDIv9O4zzvXu6ahJve9a8Oehgt2Gl0z0PLPF-xts35d3Rfbp7uH1e22SAJwLDxHNEFLFyFUQNpUknviSMIoBT7WqEgqq2sRJUVEMOgMBu2BPESJuGDXc2_nhuCa-Dufhl3Xp0_XH3ZcSzWV8om7mrlERP_xfAv-AHIfUu8</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>de Koning, M.F.</creator><creator>Veltman, A.</creator><creator>van den Bosch, P.P.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Modeling battery efficiency with parallel branches</title><author>de Koning, M.F. ; Veltman, A. ; van den Bosch, P.P.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-b1338c74af0c60e78641be13e28550bfd35e4597d2f4ef33083a83c7b0eb0f433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Batteries</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>Control systems</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical machines</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Equivalent circuits</topic><topic>Exact sciences and technology</topic><topic>Frequency</topic><topic>Ground, air and sea transportation, marine construction</topic><topic>Impedance</topic><topic>Nonlinear dynamical systems</topic><topic>Power system modeling</topic><topic>Regulation and control</topic><topic>Road transportation and traffic</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>de Koning, M.F.</creatorcontrib><creatorcontrib>Veltman, A.</creatorcontrib><creatorcontrib>van den Bosch, P.P.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>de Koning, M.F.</au><au>Veltman, A.</au><au>van den Bosch, P.P.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling battery efficiency with parallel branches</atitle><btitle>2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551)</btitle><stitle>PESC</stitle><date>2004</date><risdate>2004</risdate><volume>1</volume><spage>141</spage><epage>147 Vol.1</epage><pages>141-147 Vol.1</pages><issn>0275-9306</issn><eissn>2377-6617</eissn><isbn>9780780383999</isbn><isbn>0780383990</isbn><abstract>Most contemporary battery models are series-models based on electrochemical principles. Describing the charge/discharge efficiency of a battery is a complex issue and of major importance in the design of control systems in future cars (combined 42 V and 14 V systems). Not only does battery efficiency strongly depend on current levels, it also varies greatly with frequency. In this paper a parallel equivalent model is introduced to get a good grip on this matter. A general description of efficiency as a function of frequency, current level and initial voltage is presented. The parallel model regards the battery as a system with multiple parallel buffers and yields a different perspective on the energy distribution and distribution of losses in a battery. Furthermore, dynamic behavior is easily explained. Depending on the spectral load and required accuracy, it is possible to simplify the parallel model. Identification techniques for both linear and nonlinear model identification are presented. It appears that the nonlinear parallel model is not capable of modeling the battery for the full frequency range. However, the identification techniques can be modified to apply to other model structures as well.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/PESC.2004.1355730</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0275-9306
ispartof 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), 2004, Vol.1, p.141-147 Vol.1
issn 0275-9306
2377-6617
language eng
recordid cdi_ieee_primary_1355730
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied sciences
Batteries
Capacitance
Capacitors
Control systems
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical machines
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Equivalent circuits
Exact sciences and technology
Frequency
Ground, air and sea transportation, marine construction
Impedance
Nonlinear dynamical systems
Power system modeling
Regulation and control
Road transportation and traffic
Voltage
title Modeling battery efficiency with parallel branches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A50%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20battery%20efficiency%20with%20parallel%20branches&rft.btitle=2004%20IEEE%2035th%20Annual%20Power%20Electronics%20Specialists%20Conference%20(IEEE%20Cat.%20No.04CH37551)&rft.au=de%20Koning,%20M.F.&rft.date=2004&rft.volume=1&rft.spage=141&rft.epage=147%20Vol.1&rft.pages=141-147%20Vol.1&rft.issn=0275-9306&rft.eissn=2377-6617&rft.isbn=9780780383999&rft.isbn_list=0780383990&rft_id=info:doi/10.1109/PESC.2004.1355730&rft_dat=%3Cpascalfrancis_6IE%3E17457861%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1355730&rfr_iscdi=true