Modeling battery efficiency with parallel branches
Most contemporary battery models are series-models based on electrochemical principles. Describing the charge/discharge efficiency of a battery is a complex issue and of major importance in the design of control systems in future cars (combined 42 V and 14 V systems). Not only does battery efficienc...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147 Vol.1 |
---|---|
container_issue | |
container_start_page | 141 |
container_title | |
container_volume | 1 |
creator | de Koning, M.F. Veltman, A. van den Bosch, P.P.J. |
description | Most contemporary battery models are series-models based on electrochemical principles. Describing the charge/discharge efficiency of a battery is a complex issue and of major importance in the design of control systems in future cars (combined 42 V and 14 V systems). Not only does battery efficiency strongly depend on current levels, it also varies greatly with frequency. In this paper a parallel equivalent model is introduced to get a good grip on this matter. A general description of efficiency as a function of frequency, current level and initial voltage is presented. The parallel model regards the battery as a system with multiple parallel buffers and yields a different perspective on the energy distribution and distribution of losses in a battery. Furthermore, dynamic behavior is easily explained. Depending on the spectral load and required accuracy, it is possible to simplify the parallel model. Identification techniques for both linear and nonlinear model identification are presented. It appears that the nonlinear parallel model is not capable of modeling the battery for the full frequency range. However, the identification techniques can be modified to apply to other model structures as well. |
doi_str_mv | 10.1109/PESC.2004.1355730 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_1355730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1355730</ieee_id><sourcerecordid>17457861</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-b1338c74af0c60e78641be13e28550bfd35e4597d2f4ef33083a83c7b0eb0f433</originalsourceid><addsrcrecordid>eNpFkE9LxDAUxIN_wLruBxAvvXhsfclLmuQoy64KKwrqeUnSFzdSa2kLst_eSgVhYA7zYwaGsUsOJedgb57XL6tSAMiSo1Ia4YhlArUuqorrY7a02sAkNGitPWEZCK0Ki1CdsfNh-ABQyEFlTDx-1dSk9j33bhypP-QUYwqJ2nDIv9O4zzvXu6ahJve9a8Oehgt2Gl0z0PLPF-xts35d3Rfbp7uH1e22SAJwLDxHNEFLFyFUQNpUknviSMIoBT7WqEgqq2sRJUVEMOgMBu2BPESJuGDXc2_nhuCa-Dufhl3Xp0_XH3ZcSzWV8om7mrlERP_xfAv-AHIfUu8</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modeling battery efficiency with parallel branches</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>de Koning, M.F. ; Veltman, A. ; van den Bosch, P.P.J.</creator><creatorcontrib>de Koning, M.F. ; Veltman, A. ; van den Bosch, P.P.J.</creatorcontrib><description>Most contemporary battery models are series-models based on electrochemical principles. Describing the charge/discharge efficiency of a battery is a complex issue and of major importance in the design of control systems in future cars (combined 42 V and 14 V systems). Not only does battery efficiency strongly depend on current levels, it also varies greatly with frequency. In this paper a parallel equivalent model is introduced to get a good grip on this matter. A general description of efficiency as a function of frequency, current level and initial voltage is presented. The parallel model regards the battery as a system with multiple parallel buffers and yields a different perspective on the energy distribution and distribution of losses in a battery. Furthermore, dynamic behavior is easily explained. Depending on the spectral load and required accuracy, it is possible to simplify the parallel model. Identification techniques for both linear and nonlinear model identification are presented. It appears that the nonlinear parallel model is not capable of modeling the battery for the full frequency range. However, the identification techniques can be modified to apply to other model structures as well.</description><identifier>ISSN: 0275-9306</identifier><identifier>ISBN: 9780780383999</identifier><identifier>ISBN: 0780383990</identifier><identifier>EISSN: 2377-6617</identifier><identifier>DOI: 10.1109/PESC.2004.1355730</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Applied sciences ; Batteries ; Capacitance ; Capacitors ; Control systems ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical machines ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Equivalent circuits ; Exact sciences and technology ; Frequency ; Ground, air and sea transportation, marine construction ; Impedance ; Nonlinear dynamical systems ; Power system modeling ; Regulation and control ; Road transportation and traffic ; Voltage</subject><ispartof>2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), 2004, Vol.1, p.141-147 Vol.1</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1355730$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,4049,4050,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1355730$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17457861$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>de Koning, M.F.</creatorcontrib><creatorcontrib>Veltman, A.</creatorcontrib><creatorcontrib>van den Bosch, P.P.J.</creatorcontrib><title>Modeling battery efficiency with parallel branches</title><title>2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551)</title><addtitle>PESC</addtitle><description>Most contemporary battery models are series-models based on electrochemical principles. Describing the charge/discharge efficiency of a battery is a complex issue and of major importance in the design of control systems in future cars (combined 42 V and 14 V systems). Not only does battery efficiency strongly depend on current levels, it also varies greatly with frequency. In this paper a parallel equivalent model is introduced to get a good grip on this matter. A general description of efficiency as a function of frequency, current level and initial voltage is presented. The parallel model regards the battery as a system with multiple parallel buffers and yields a different perspective on the energy distribution and distribution of losses in a battery. Furthermore, dynamic behavior is easily explained. Depending on the spectral load and required accuracy, it is possible to simplify the parallel model. Identification techniques for both linear and nonlinear model identification are presented. It appears that the nonlinear parallel model is not capable of modeling the battery for the full frequency range. However, the identification techniques can be modified to apply to other model structures as well.</description><subject>Applied sciences</subject><subject>Batteries</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>Control systems</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical machines</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Equivalent circuits</subject><subject>Exact sciences and technology</subject><subject>Frequency</subject><subject>Ground, air and sea transportation, marine construction</subject><subject>Impedance</subject><subject>Nonlinear dynamical systems</subject><subject>Power system modeling</subject><subject>Regulation and control</subject><subject>Road transportation and traffic</subject><subject>Voltage</subject><issn>0275-9306</issn><issn>2377-6617</issn><isbn>9780780383999</isbn><isbn>0780383990</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkE9LxDAUxIN_wLruBxAvvXhsfclLmuQoy64KKwrqeUnSFzdSa2kLst_eSgVhYA7zYwaGsUsOJedgb57XL6tSAMiSo1Ia4YhlArUuqorrY7a02sAkNGitPWEZCK0Ki1CdsfNh-ABQyEFlTDx-1dSk9j33bhypP-QUYwqJ2nDIv9O4zzvXu6ahJve9a8Oehgt2Gl0z0PLPF-xts35d3Rfbp7uH1e22SAJwLDxHNEFLFyFUQNpUknviSMIoBT7WqEgqq2sRJUVEMOgMBu2BPESJuGDXc2_nhuCa-Dufhl3Xp0_XH3ZcSzWV8om7mrlERP_xfAv-AHIfUu8</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>de Koning, M.F.</creator><creator>Veltman, A.</creator><creator>van den Bosch, P.P.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Modeling battery efficiency with parallel branches</title><author>de Koning, M.F. ; Veltman, A. ; van den Bosch, P.P.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-b1338c74af0c60e78641be13e28550bfd35e4597d2f4ef33083a83c7b0eb0f433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Batteries</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>Control systems</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical machines</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Equivalent circuits</topic><topic>Exact sciences and technology</topic><topic>Frequency</topic><topic>Ground, air and sea transportation, marine construction</topic><topic>Impedance</topic><topic>Nonlinear dynamical systems</topic><topic>Power system modeling</topic><topic>Regulation and control</topic><topic>Road transportation and traffic</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>de Koning, M.F.</creatorcontrib><creatorcontrib>Veltman, A.</creatorcontrib><creatorcontrib>van den Bosch, P.P.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>de Koning, M.F.</au><au>Veltman, A.</au><au>van den Bosch, P.P.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling battery efficiency with parallel branches</atitle><btitle>2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551)</btitle><stitle>PESC</stitle><date>2004</date><risdate>2004</risdate><volume>1</volume><spage>141</spage><epage>147 Vol.1</epage><pages>141-147 Vol.1</pages><issn>0275-9306</issn><eissn>2377-6617</eissn><isbn>9780780383999</isbn><isbn>0780383990</isbn><abstract>Most contemporary battery models are series-models based on electrochemical principles. Describing the charge/discharge efficiency of a battery is a complex issue and of major importance in the design of control systems in future cars (combined 42 V and 14 V systems). Not only does battery efficiency strongly depend on current levels, it also varies greatly with frequency. In this paper a parallel equivalent model is introduced to get a good grip on this matter. A general description of efficiency as a function of frequency, current level and initial voltage is presented. The parallel model regards the battery as a system with multiple parallel buffers and yields a different perspective on the energy distribution and distribution of losses in a battery. Furthermore, dynamic behavior is easily explained. Depending on the spectral load and required accuracy, it is possible to simplify the parallel model. Identification techniques for both linear and nonlinear model identification are presented. It appears that the nonlinear parallel model is not capable of modeling the battery for the full frequency range. However, the identification techniques can be modified to apply to other model structures as well.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/PESC.2004.1355730</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0275-9306 |
ispartof | 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), 2004, Vol.1, p.141-147 Vol.1 |
issn | 0275-9306 2377-6617 |
language | eng |
recordid | cdi_ieee_primary_1355730 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Applied sciences Batteries Capacitance Capacitors Control systems Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical machines Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Equivalent circuits Exact sciences and technology Frequency Ground, air and sea transportation, marine construction Impedance Nonlinear dynamical systems Power system modeling Regulation and control Road transportation and traffic Voltage |
title | Modeling battery efficiency with parallel branches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A50%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20battery%20efficiency%20with%20parallel%20branches&rft.btitle=2004%20IEEE%2035th%20Annual%20Power%20Electronics%20Specialists%20Conference%20(IEEE%20Cat.%20No.04CH37551)&rft.au=de%20Koning,%20M.F.&rft.date=2004&rft.volume=1&rft.spage=141&rft.epage=147%20Vol.1&rft.pages=141-147%20Vol.1&rft.issn=0275-9306&rft.eissn=2377-6617&rft.isbn=9780780383999&rft.isbn_list=0780383990&rft_id=info:doi/10.1109/PESC.2004.1355730&rft_dat=%3Cpascalfrancis_6IE%3E17457861%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1355730&rfr_iscdi=true |