Multihop diversity in wireless relaying channels

This paper presents theoretical characterizations and analysis for the physical layer of multihop wireless communications channels. Four channel models are considered and developed: the decoded relaying multihop channel; the amplified relaying multihop channel; the decoded relaying multihop diversit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2004-10, Vol.52 (10), p.1820-1830
Hauptverfasser: Boyer, J., Falconer, D.D., Yanikomeroglu, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1830
container_issue 10
container_start_page 1820
container_title IEEE transactions on communications
container_volume 52
creator Boyer, J.
Falconer, D.D.
Yanikomeroglu, H.
description This paper presents theoretical characterizations and analysis for the physical layer of multihop wireless communications channels. Four channel models are considered and developed: the decoded relaying multihop channel; the amplified relaying multihop channel; the decoded relaying multihop diversity channel; and the amplified relaying multihop diversity channel. Two classifications are discussed: decoded relaying versus amplified relaying, and multihop channels versus multihop diversity channels. The channel models are compared, through analysis and simulations, with the "singlehop" (direct transmission) reference channel on the basis of signal-to-noise ratio, probability of outage, probability of error, and optimal power allocation. Each of the four channel models is shown to outperform the singlehop reference channel under the condition that the set of intermediate relaying terminals is selected intelligently. Multihop diversity channels are shown to outperform multihop channels. Amplified relaying is shown to outperform decoded relaying despite noise propagation. This is attributed to the fact that amplified relaying does not suffer from the error propagation which limits the performance of decoded relaying channels to that of their weakest link.
doi_str_mv 10.1109/TCOMM.2004.836447
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1350931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1350931</ieee_id><sourcerecordid>28393225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-558f82b9cd0aeab92b764042aa8707f184edfefb8d8f59e680e0552ee25327af3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKs_QLwsgt62TpLNJnuU4he09FLPIbs7sSnb3ZrsKv33prYgeJrDPO87w0PINYUJpVA8LKeL-XzCALKJ4nmWyRMyokKoFJSQp2QEUECaS6nOyUUIa4ggcD4iMB-a3q26bVK7L_TB9bvEtcm389hgCEkcZufaj6RambbFJlySM2uagFfHOSbvz0_L6Ws6W7y8TR9naZVx0afxtFWsLKoaDJqyYKXMM8iYMUqCtFRlWFu0paqVFQXmChCEYIhMcCaN5WNyf-jd-u5zwNDrjQsVNo1psRuCZooXnEV6TG7_getu8G38TSuVgcoLChGiB6jyXQgerd56tzF-pynovUD9K1DvBeqDwJi5OxabUJnGetNWLvwFc8ZoLnnkbg6cQ8S_NRdQcMp_ALl3eK8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884086910</pqid></control><display><type>article</type><title>Multihop diversity in wireless relaying channels</title><source>IEEE Electronic Library (IEL)</source><creator>Boyer, J. ; Falconer, D.D. ; Yanikomeroglu, H.</creator><creatorcontrib>Boyer, J. ; Falconer, D.D. ; Yanikomeroglu, H.</creatorcontrib><description>This paper presents theoretical characterizations and analysis for the physical layer of multihop wireless communications channels. Four channel models are considered and developed: the decoded relaying multihop channel; the amplified relaying multihop channel; the decoded relaying multihop diversity channel; and the amplified relaying multihop diversity channel. Two classifications are discussed: decoded relaying versus amplified relaying, and multihop channels versus multihop diversity channels. The channel models are compared, through analysis and simulations, with the "singlehop" (direct transmission) reference channel on the basis of signal-to-noise ratio, probability of outage, probability of error, and optimal power allocation. Each of the four channel models is shown to outperform the singlehop reference channel under the condition that the set of intermediate relaying terminals is selected intelligently. Multihop diversity channels are shown to outperform multihop channels. Amplified relaying is shown to outperform decoded relaying despite noise propagation. This is attributed to the fact that amplified relaying does not suffer from the error propagation which limits the performance of decoded relaying channels to that of their weakest link.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2004.836447</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Ad-hoc networks ; Analytical models ; Applied sciences ; Cellular networks ; cooperative diversity ; Decoding ; Detection, estimation, filtering, equalization, prediction ; diversity techniques ; Equipments and installations ; Exact sciences and technology ; Information, signal and communications theory ; mesh networks ; Mobile communication ; Mobile radiocommunication systems ; multihop channels ; multihop diversity ; Physical layer ; Protocols ; Radiocommunications ; Relays ; Signal analysis ; Signal and communications theory ; Signal to noise ratio ; Signal, noise ; Spread spectrum communication ; Switching and signalling ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Transmission and modulation (techniques and equipments) ; Wireless communication ; wireless relaying</subject><ispartof>IEEE transactions on communications, 2004-10, Vol.52 (10), p.1820-1830</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-558f82b9cd0aeab92b764042aa8707f184edfefb8d8f59e680e0552ee25327af3</citedby><cites>FETCH-LOGICAL-c435t-558f82b9cd0aeab92b764042aa8707f184edfefb8d8f59e680e0552ee25327af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1350931$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1350931$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16221673$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Boyer, J.</creatorcontrib><creatorcontrib>Falconer, D.D.</creatorcontrib><creatorcontrib>Yanikomeroglu, H.</creatorcontrib><title>Multihop diversity in wireless relaying channels</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>This paper presents theoretical characterizations and analysis for the physical layer of multihop wireless communications channels. Four channel models are considered and developed: the decoded relaying multihop channel; the amplified relaying multihop channel; the decoded relaying multihop diversity channel; and the amplified relaying multihop diversity channel. Two classifications are discussed: decoded relaying versus amplified relaying, and multihop channels versus multihop diversity channels. The channel models are compared, through analysis and simulations, with the "singlehop" (direct transmission) reference channel on the basis of signal-to-noise ratio, probability of outage, probability of error, and optimal power allocation. Each of the four channel models is shown to outperform the singlehop reference channel under the condition that the set of intermediate relaying terminals is selected intelligently. Multihop diversity channels are shown to outperform multihop channels. Amplified relaying is shown to outperform decoded relaying despite noise propagation. This is attributed to the fact that amplified relaying does not suffer from the error propagation which limits the performance of decoded relaying channels to that of their weakest link.</description><subject>Ad-hoc networks</subject><subject>Analytical models</subject><subject>Applied sciences</subject><subject>Cellular networks</subject><subject>cooperative diversity</subject><subject>Decoding</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>diversity techniques</subject><subject>Equipments and installations</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>mesh networks</subject><subject>Mobile communication</subject><subject>Mobile radiocommunication systems</subject><subject>multihop channels</subject><subject>multihop diversity</subject><subject>Physical layer</subject><subject>Protocols</subject><subject>Radiocommunications</subject><subject>Relays</subject><subject>Signal analysis</subject><subject>Signal and communications theory</subject><subject>Signal to noise ratio</subject><subject>Signal, noise</subject><subject>Spread spectrum communication</subject><subject>Switching and signalling</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Wireless communication</subject><subject>wireless relaying</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWKs_QLwsgt62TpLNJnuU4he09FLPIbs7sSnb3ZrsKv33prYgeJrDPO87w0PINYUJpVA8LKeL-XzCALKJ4nmWyRMyokKoFJSQp2QEUECaS6nOyUUIa4ggcD4iMB-a3q26bVK7L_TB9bvEtcm389hgCEkcZufaj6RambbFJlySM2uagFfHOSbvz0_L6Ws6W7y8TR9naZVx0afxtFWsLKoaDJqyYKXMM8iYMUqCtFRlWFu0paqVFQXmChCEYIhMcCaN5WNyf-jd-u5zwNDrjQsVNo1psRuCZooXnEV6TG7_getu8G38TSuVgcoLChGiB6jyXQgerd56tzF-pynovUD9K1DvBeqDwJi5OxabUJnGetNWLvwFc8ZoLnnkbg6cQ8S_NRdQcMp_ALl3eK8</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Boyer, J.</creator><creator>Falconer, D.D.</creator><creator>Yanikomeroglu, H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20041001</creationdate><title>Multihop diversity in wireless relaying channels</title><author>Boyer, J. ; Falconer, D.D. ; Yanikomeroglu, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-558f82b9cd0aeab92b764042aa8707f184edfefb8d8f59e680e0552ee25327af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Ad-hoc networks</topic><topic>Analytical models</topic><topic>Applied sciences</topic><topic>Cellular networks</topic><topic>cooperative diversity</topic><topic>Decoding</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>diversity techniques</topic><topic>Equipments and installations</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>mesh networks</topic><topic>Mobile communication</topic><topic>Mobile radiocommunication systems</topic><topic>multihop channels</topic><topic>multihop diversity</topic><topic>Physical layer</topic><topic>Protocols</topic><topic>Radiocommunications</topic><topic>Relays</topic><topic>Signal analysis</topic><topic>Signal and communications theory</topic><topic>Signal to noise ratio</topic><topic>Signal, noise</topic><topic>Spread spectrum communication</topic><topic>Switching and signalling</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Wireless communication</topic><topic>wireless relaying</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyer, J.</creatorcontrib><creatorcontrib>Falconer, D.D.</creatorcontrib><creatorcontrib>Yanikomeroglu, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boyer, J.</au><au>Falconer, D.D.</au><au>Yanikomeroglu, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multihop diversity in wireless relaying channels</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2004-10-01</date><risdate>2004</risdate><volume>52</volume><issue>10</issue><spage>1820</spage><epage>1830</epage><pages>1820-1830</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>This paper presents theoretical characterizations and analysis for the physical layer of multihop wireless communications channels. Four channel models are considered and developed: the decoded relaying multihop channel; the amplified relaying multihop channel; the decoded relaying multihop diversity channel; and the amplified relaying multihop diversity channel. Two classifications are discussed: decoded relaying versus amplified relaying, and multihop channels versus multihop diversity channels. The channel models are compared, through analysis and simulations, with the "singlehop" (direct transmission) reference channel on the basis of signal-to-noise ratio, probability of outage, probability of error, and optimal power allocation. Each of the four channel models is shown to outperform the singlehop reference channel under the condition that the set of intermediate relaying terminals is selected intelligently. Multihop diversity channels are shown to outperform multihop channels. Amplified relaying is shown to outperform decoded relaying despite noise propagation. This is attributed to the fact that amplified relaying does not suffer from the error propagation which limits the performance of decoded relaying channels to that of their weakest link.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2004.836447</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2004-10, Vol.52 (10), p.1820-1830
issn 0090-6778
1558-0857
language eng
recordid cdi_ieee_primary_1350931
source IEEE Electronic Library (IEL)
subjects Ad-hoc networks
Analytical models
Applied sciences
Cellular networks
cooperative diversity
Decoding
Detection, estimation, filtering, equalization, prediction
diversity techniques
Equipments and installations
Exact sciences and technology
Information, signal and communications theory
mesh networks
Mobile communication
Mobile radiocommunication systems
multihop channels
multihop diversity
Physical layer
Protocols
Radiocommunications
Relays
Signal analysis
Signal and communications theory
Signal to noise ratio
Signal, noise
Spread spectrum communication
Switching and signalling
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Transmission and modulation (techniques and equipments)
Wireless communication
wireless relaying
title Multihop diversity in wireless relaying channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A13%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multihop%20diversity%20in%20wireless%20relaying%20channels&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Boyer,%20J.&rft.date=2004-10-01&rft.volume=52&rft.issue=10&rft.spage=1820&rft.epage=1830&rft.pages=1820-1830&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2004.836447&rft_dat=%3Cproquest_RIE%3E28393225%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884086910&rft_id=info:pmid/&rft_ieee_id=1350931&rfr_iscdi=true