Multihop diversity in wireless relaying channels
This paper presents theoretical characterizations and analysis for the physical layer of multihop wireless communications channels. Four channel models are considered and developed: the decoded relaying multihop channel; the amplified relaying multihop channel; the decoded relaying multihop diversit...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2004-10, Vol.52 (10), p.1820-1830 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1830 |
---|---|
container_issue | 10 |
container_start_page | 1820 |
container_title | IEEE transactions on communications |
container_volume | 52 |
creator | Boyer, J. Falconer, D.D. Yanikomeroglu, H. |
description | This paper presents theoretical characterizations and analysis for the physical layer of multihop wireless communications channels. Four channel models are considered and developed: the decoded relaying multihop channel; the amplified relaying multihop channel; the decoded relaying multihop diversity channel; and the amplified relaying multihop diversity channel. Two classifications are discussed: decoded relaying versus amplified relaying, and multihop channels versus multihop diversity channels. The channel models are compared, through analysis and simulations, with the "singlehop" (direct transmission) reference channel on the basis of signal-to-noise ratio, probability of outage, probability of error, and optimal power allocation. Each of the four channel models is shown to outperform the singlehop reference channel under the condition that the set of intermediate relaying terminals is selected intelligently. Multihop diversity channels are shown to outperform multihop channels. Amplified relaying is shown to outperform decoded relaying despite noise propagation. This is attributed to the fact that amplified relaying does not suffer from the error propagation which limits the performance of decoded relaying channels to that of their weakest link. |
doi_str_mv | 10.1109/TCOMM.2004.836447 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1350931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1350931</ieee_id><sourcerecordid>28393225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-558f82b9cd0aeab92b764042aa8707f184edfefb8d8f59e680e0552ee25327af3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKs_QLwsgt62TpLNJnuU4he09FLPIbs7sSnb3ZrsKv33prYgeJrDPO87w0PINYUJpVA8LKeL-XzCALKJ4nmWyRMyokKoFJSQp2QEUECaS6nOyUUIa4ggcD4iMB-a3q26bVK7L_TB9bvEtcm389hgCEkcZufaj6RambbFJlySM2uagFfHOSbvz0_L6Ws6W7y8TR9naZVx0afxtFWsLKoaDJqyYKXMM8iYMUqCtFRlWFu0paqVFQXmChCEYIhMcCaN5WNyf-jd-u5zwNDrjQsVNo1psRuCZooXnEV6TG7_getu8G38TSuVgcoLChGiB6jyXQgerd56tzF-pynovUD9K1DvBeqDwJi5OxabUJnGetNWLvwFc8ZoLnnkbg6cQ8S_NRdQcMp_ALl3eK8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884086910</pqid></control><display><type>article</type><title>Multihop diversity in wireless relaying channels</title><source>IEEE Electronic Library (IEL)</source><creator>Boyer, J. ; Falconer, D.D. ; Yanikomeroglu, H.</creator><creatorcontrib>Boyer, J. ; Falconer, D.D. ; Yanikomeroglu, H.</creatorcontrib><description>This paper presents theoretical characterizations and analysis for the physical layer of multihop wireless communications channels. Four channel models are considered and developed: the decoded relaying multihop channel; the amplified relaying multihop channel; the decoded relaying multihop diversity channel; and the amplified relaying multihop diversity channel. Two classifications are discussed: decoded relaying versus amplified relaying, and multihop channels versus multihop diversity channels. The channel models are compared, through analysis and simulations, with the "singlehop" (direct transmission) reference channel on the basis of signal-to-noise ratio, probability of outage, probability of error, and optimal power allocation. Each of the four channel models is shown to outperform the singlehop reference channel under the condition that the set of intermediate relaying terminals is selected intelligently. Multihop diversity channels are shown to outperform multihop channels. Amplified relaying is shown to outperform decoded relaying despite noise propagation. This is attributed to the fact that amplified relaying does not suffer from the error propagation which limits the performance of decoded relaying channels to that of their weakest link.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2004.836447</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Ad-hoc networks ; Analytical models ; Applied sciences ; Cellular networks ; cooperative diversity ; Decoding ; Detection, estimation, filtering, equalization, prediction ; diversity techniques ; Equipments and installations ; Exact sciences and technology ; Information, signal and communications theory ; mesh networks ; Mobile communication ; Mobile radiocommunication systems ; multihop channels ; multihop diversity ; Physical layer ; Protocols ; Radiocommunications ; Relays ; Signal analysis ; Signal and communications theory ; Signal to noise ratio ; Signal, noise ; Spread spectrum communication ; Switching and signalling ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Transmission and modulation (techniques and equipments) ; Wireless communication ; wireless relaying</subject><ispartof>IEEE transactions on communications, 2004-10, Vol.52 (10), p.1820-1830</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-558f82b9cd0aeab92b764042aa8707f184edfefb8d8f59e680e0552ee25327af3</citedby><cites>FETCH-LOGICAL-c435t-558f82b9cd0aeab92b764042aa8707f184edfefb8d8f59e680e0552ee25327af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1350931$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1350931$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16221673$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Boyer, J.</creatorcontrib><creatorcontrib>Falconer, D.D.</creatorcontrib><creatorcontrib>Yanikomeroglu, H.</creatorcontrib><title>Multihop diversity in wireless relaying channels</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>This paper presents theoretical characterizations and analysis for the physical layer of multihop wireless communications channels. Four channel models are considered and developed: the decoded relaying multihop channel; the amplified relaying multihop channel; the decoded relaying multihop diversity channel; and the amplified relaying multihop diversity channel. Two classifications are discussed: decoded relaying versus amplified relaying, and multihop channels versus multihop diversity channels. The channel models are compared, through analysis and simulations, with the "singlehop" (direct transmission) reference channel on the basis of signal-to-noise ratio, probability of outage, probability of error, and optimal power allocation. Each of the four channel models is shown to outperform the singlehop reference channel under the condition that the set of intermediate relaying terminals is selected intelligently. Multihop diversity channels are shown to outperform multihop channels. Amplified relaying is shown to outperform decoded relaying despite noise propagation. This is attributed to the fact that amplified relaying does not suffer from the error propagation which limits the performance of decoded relaying channels to that of their weakest link.</description><subject>Ad-hoc networks</subject><subject>Analytical models</subject><subject>Applied sciences</subject><subject>Cellular networks</subject><subject>cooperative diversity</subject><subject>Decoding</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>diversity techniques</subject><subject>Equipments and installations</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>mesh networks</subject><subject>Mobile communication</subject><subject>Mobile radiocommunication systems</subject><subject>multihop channels</subject><subject>multihop diversity</subject><subject>Physical layer</subject><subject>Protocols</subject><subject>Radiocommunications</subject><subject>Relays</subject><subject>Signal analysis</subject><subject>Signal and communications theory</subject><subject>Signal to noise ratio</subject><subject>Signal, noise</subject><subject>Spread spectrum communication</subject><subject>Switching and signalling</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Wireless communication</subject><subject>wireless relaying</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWKs_QLwsgt62TpLNJnuU4he09FLPIbs7sSnb3ZrsKv33prYgeJrDPO87w0PINYUJpVA8LKeL-XzCALKJ4nmWyRMyokKoFJSQp2QEUECaS6nOyUUIa4ggcD4iMB-a3q26bVK7L_TB9bvEtcm389hgCEkcZufaj6RambbFJlySM2uagFfHOSbvz0_L6Ws6W7y8TR9naZVx0afxtFWsLKoaDJqyYKXMM8iYMUqCtFRlWFu0paqVFQXmChCEYIhMcCaN5WNyf-jd-u5zwNDrjQsVNo1psRuCZooXnEV6TG7_getu8G38TSuVgcoLChGiB6jyXQgerd56tzF-pynovUD9K1DvBeqDwJi5OxabUJnGetNWLvwFc8ZoLnnkbg6cQ8S_NRdQcMp_ALl3eK8</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Boyer, J.</creator><creator>Falconer, D.D.</creator><creator>Yanikomeroglu, H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20041001</creationdate><title>Multihop diversity in wireless relaying channels</title><author>Boyer, J. ; Falconer, D.D. ; Yanikomeroglu, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-558f82b9cd0aeab92b764042aa8707f184edfefb8d8f59e680e0552ee25327af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Ad-hoc networks</topic><topic>Analytical models</topic><topic>Applied sciences</topic><topic>Cellular networks</topic><topic>cooperative diversity</topic><topic>Decoding</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>diversity techniques</topic><topic>Equipments and installations</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>mesh networks</topic><topic>Mobile communication</topic><topic>Mobile radiocommunication systems</topic><topic>multihop channels</topic><topic>multihop diversity</topic><topic>Physical layer</topic><topic>Protocols</topic><topic>Radiocommunications</topic><topic>Relays</topic><topic>Signal analysis</topic><topic>Signal and communications theory</topic><topic>Signal to noise ratio</topic><topic>Signal, noise</topic><topic>Spread spectrum communication</topic><topic>Switching and signalling</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Wireless communication</topic><topic>wireless relaying</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyer, J.</creatorcontrib><creatorcontrib>Falconer, D.D.</creatorcontrib><creatorcontrib>Yanikomeroglu, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boyer, J.</au><au>Falconer, D.D.</au><au>Yanikomeroglu, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multihop diversity in wireless relaying channels</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2004-10-01</date><risdate>2004</risdate><volume>52</volume><issue>10</issue><spage>1820</spage><epage>1830</epage><pages>1820-1830</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>This paper presents theoretical characterizations and analysis for the physical layer of multihop wireless communications channels. Four channel models are considered and developed: the decoded relaying multihop channel; the amplified relaying multihop channel; the decoded relaying multihop diversity channel; and the amplified relaying multihop diversity channel. Two classifications are discussed: decoded relaying versus amplified relaying, and multihop channels versus multihop diversity channels. The channel models are compared, through analysis and simulations, with the "singlehop" (direct transmission) reference channel on the basis of signal-to-noise ratio, probability of outage, probability of error, and optimal power allocation. Each of the four channel models is shown to outperform the singlehop reference channel under the condition that the set of intermediate relaying terminals is selected intelligently. Multihop diversity channels are shown to outperform multihop channels. Amplified relaying is shown to outperform decoded relaying despite noise propagation. This is attributed to the fact that amplified relaying does not suffer from the error propagation which limits the performance of decoded relaying channels to that of their weakest link.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2004.836447</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2004-10, Vol.52 (10), p.1820-1830 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_ieee_primary_1350931 |
source | IEEE Electronic Library (IEL) |
subjects | Ad-hoc networks Analytical models Applied sciences Cellular networks cooperative diversity Decoding Detection, estimation, filtering, equalization, prediction diversity techniques Equipments and installations Exact sciences and technology Information, signal and communications theory mesh networks Mobile communication Mobile radiocommunication systems multihop channels multihop diversity Physical layer Protocols Radiocommunications Relays Signal analysis Signal and communications theory Signal to noise ratio Signal, noise Spread spectrum communication Switching and signalling Systems, networks and services of telecommunications Telecommunications Telecommunications and information theory Transmission and modulation (techniques and equipments) Wireless communication wireless relaying |
title | Multihop diversity in wireless relaying channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A13%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multihop%20diversity%20in%20wireless%20relaying%20channels&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Boyer,%20J.&rft.date=2004-10-01&rft.volume=52&rft.issue=10&rft.spage=1820&rft.epage=1830&rft.pages=1820-1830&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2004.836447&rft_dat=%3Cproquest_RIE%3E28393225%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884086910&rft_id=info:pmid/&rft_ieee_id=1350931&rfr_iscdi=true |