Well-being analysis for composite generation and transmission systems

This paper presents a new approach to evaluating the health of composite generation and transmission systems. A well-being framework is used to classify the system states into healthy, marginal and at risk, according to a pre-defined deterministic criterion. In order to combine deterministic and pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2004-11, Vol.19 (4), p.1763-1770
Hauptverfasser: da Silva, A.M.L., de Resende, L.C., da Fonseca Manso, L.A., Billinton, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1770
container_issue 4
container_start_page 1763
container_title IEEE transactions on power systems
container_volume 19
creator da Silva, A.M.L.
de Resende, L.C.
da Fonseca Manso, L.A.
Billinton, R.
description This paper presents a new approach to evaluating the health of composite generation and transmission systems. A well-being framework is used to classify the system states into healthy, marginal and at risk, according to a pre-defined deterministic criterion. In order to combine deterministic and probabilistic concepts, the proposed methodology uses a nonsequential Monte Carlo simulation, a multilevel nonaggregate Markov load model and new test functions to estimate the well-being indices. These test functions are based on an estimating process, designated as the one-step forward state transition, which is very flexible and efficient. Case studies on the IEEE-RTS (Reliability Test System) and on a modification of this system are presented and discussed.
doi_str_mv 10.1109/TPWRS.2004.835633
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1350812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1350812</ieee_id><sourcerecordid>28644676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-9db93760a2b5444d4eefba1fc97c0d82e00176a3a20add8acb60d64b8605da9d3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_gHgJHvSUOpv9yO5RSv2AgqKVHsMmuykpabbupIf-e7dGEDx4Gph53mHmIeSSwoRS0HeL1-Xb-yQD4BPFhGTsiIyoECoFmetjMgKlRKq0gFNyhrgGABkHIzJburZNS9d0q8R0pt1jg0ntQ1L5zdZj07tk5ToXTN_4LhI26YPpcNMgHhq4x95t8Jyc1KZFd_FTx-TjYbaYPqXzl8fn6f08rZhgfaptqVkuwWSl4Jxb7lxdGlpXOq_AqswB0FwaZjIw1ipTlRKs5KWSIKzRlo3J7bB3G_znzmFfxEOq-IHpnN9hobSkKud5Fsmbf8lMSc5lLiN4_Qdc-12IJuI2xZSQwHSE6ABVwSMGVxfb0GxM2BcUioP_4tt_cfBfDP5j5mrINM65X54JUDRjXxjagkE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883856039</pqid></control><display><type>article</type><title>Well-being analysis for composite generation and transmission systems</title><source>IEEE Electronic Library (IEL)</source><creator>da Silva, A.M.L. ; de Resende, L.C. ; da Fonseca Manso, L.A. ; Billinton, R.</creator><creatorcontrib>da Silva, A.M.L. ; de Resende, L.C. ; da Fonseca Manso, L.A. ; Billinton, R.</creatorcontrib><description>This paper presents a new approach to evaluating the health of composite generation and transmission systems. A well-being framework is used to classify the system states into healthy, marginal and at risk, according to a pre-defined deterministic criterion. In order to combine deterministic and probabilistic concepts, the proposed methodology uses a nonsequential Monte Carlo simulation, a multilevel nonaggregate Markov load model and new test functions to estimate the well-being indices. These test functions are based on an estimating process, designated as the one-step forward state transition, which is very flexible and efficient. Case studies on the IEEE-RTS (Reliability Test System) and on a modification of this system are presented and discussed.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2004.835633</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Classification ; Composite reliability ; Computer simulation ; Criteria ; Estimates ; health analysis ; Load modeling ; Markov processes ; Mathematical models ; Monte Carlo methods ; Monte Carlo simulation ; Multilevel ; Power system analysis computing ; Power system measurements ; Power system planning ; Power system reliability ; Power system simulation ; Process design ; Reliability engineering ; State estimation ; Testing ; well-being analysis</subject><ispartof>IEEE transactions on power systems, 2004-11, Vol.19 (4), p.1763-1770</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-9db93760a2b5444d4eefba1fc97c0d82e00176a3a20add8acb60d64b8605da9d3</citedby><cites>FETCH-LOGICAL-c353t-9db93760a2b5444d4eefba1fc97c0d82e00176a3a20add8acb60d64b8605da9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1350812$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1350812$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>da Silva, A.M.L.</creatorcontrib><creatorcontrib>de Resende, L.C.</creatorcontrib><creatorcontrib>da Fonseca Manso, L.A.</creatorcontrib><creatorcontrib>Billinton, R.</creatorcontrib><title>Well-being analysis for composite generation and transmission systems</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper presents a new approach to evaluating the health of composite generation and transmission systems. A well-being framework is used to classify the system states into healthy, marginal and at risk, according to a pre-defined deterministic criterion. In order to combine deterministic and probabilistic concepts, the proposed methodology uses a nonsequential Monte Carlo simulation, a multilevel nonaggregate Markov load model and new test functions to estimate the well-being indices. These test functions are based on an estimating process, designated as the one-step forward state transition, which is very flexible and efficient. Case studies on the IEEE-RTS (Reliability Test System) and on a modification of this system are presented and discussed.</description><subject>Classification</subject><subject>Composite reliability</subject><subject>Computer simulation</subject><subject>Criteria</subject><subject>Estimates</subject><subject>health analysis</subject><subject>Load modeling</subject><subject>Markov processes</subject><subject>Mathematical models</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Multilevel</subject><subject>Power system analysis computing</subject><subject>Power system measurements</subject><subject>Power system planning</subject><subject>Power system reliability</subject><subject>Power system simulation</subject><subject>Process design</subject><subject>Reliability engineering</subject><subject>State estimation</subject><subject>Testing</subject><subject>well-being analysis</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1Lw0AQhhdRsFZ_gHgJHvSUOpv9yO5RSv2AgqKVHsMmuykpabbupIf-e7dGEDx4Gph53mHmIeSSwoRS0HeL1-Xb-yQD4BPFhGTsiIyoECoFmetjMgKlRKq0gFNyhrgGABkHIzJburZNS9d0q8R0pt1jg0ntQ1L5zdZj07tk5ToXTN_4LhI26YPpcNMgHhq4x95t8Jyc1KZFd_FTx-TjYbaYPqXzl8fn6f08rZhgfaptqVkuwWSl4Jxb7lxdGlpXOq_AqswB0FwaZjIw1ipTlRKs5KWSIKzRlo3J7bB3G_znzmFfxEOq-IHpnN9hobSkKud5Fsmbf8lMSc5lLiN4_Qdc-12IJuI2xZSQwHSE6ABVwSMGVxfb0GxM2BcUioP_4tt_cfBfDP5j5mrINM65X54JUDRjXxjagkE</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>da Silva, A.M.L.</creator><creator>de Resende, L.C.</creator><creator>da Fonseca Manso, L.A.</creator><creator>Billinton, R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20041101</creationdate><title>Well-being analysis for composite generation and transmission systems</title><author>da Silva, A.M.L. ; de Resende, L.C. ; da Fonseca Manso, L.A. ; Billinton, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-9db93760a2b5444d4eefba1fc97c0d82e00176a3a20add8acb60d64b8605da9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Classification</topic><topic>Composite reliability</topic><topic>Computer simulation</topic><topic>Criteria</topic><topic>Estimates</topic><topic>health analysis</topic><topic>Load modeling</topic><topic>Markov processes</topic><topic>Mathematical models</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Multilevel</topic><topic>Power system analysis computing</topic><topic>Power system measurements</topic><topic>Power system planning</topic><topic>Power system reliability</topic><topic>Power system simulation</topic><topic>Process design</topic><topic>Reliability engineering</topic><topic>State estimation</topic><topic>Testing</topic><topic>well-being analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>da Silva, A.M.L.</creatorcontrib><creatorcontrib>de Resende, L.C.</creatorcontrib><creatorcontrib>da Fonseca Manso, L.A.</creatorcontrib><creatorcontrib>Billinton, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>da Silva, A.M.L.</au><au>de Resende, L.C.</au><au>da Fonseca Manso, L.A.</au><au>Billinton, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Well-being analysis for composite generation and transmission systems</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2004-11-01</date><risdate>2004</risdate><volume>19</volume><issue>4</issue><spage>1763</spage><epage>1770</epage><pages>1763-1770</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper presents a new approach to evaluating the health of composite generation and transmission systems. A well-being framework is used to classify the system states into healthy, marginal and at risk, according to a pre-defined deterministic criterion. In order to combine deterministic and probabilistic concepts, the proposed methodology uses a nonsequential Monte Carlo simulation, a multilevel nonaggregate Markov load model and new test functions to estimate the well-being indices. These test functions are based on an estimating process, designated as the one-step forward state transition, which is very flexible and efficient. Case studies on the IEEE-RTS (Reliability Test System) and on a modification of this system are presented and discussed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2004.835633</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2004-11, Vol.19 (4), p.1763-1770
issn 0885-8950
1558-0679
language eng
recordid cdi_ieee_primary_1350812
source IEEE Electronic Library (IEL)
subjects Classification
Composite reliability
Computer simulation
Criteria
Estimates
health analysis
Load modeling
Markov processes
Mathematical models
Monte Carlo methods
Monte Carlo simulation
Multilevel
Power system analysis computing
Power system measurements
Power system planning
Power system reliability
Power system simulation
Process design
Reliability engineering
State estimation
Testing
well-being analysis
title Well-being analysis for composite generation and transmission systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A15%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Well-being%20analysis%20for%20composite%20generation%20and%20transmission%20systems&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=da%20Silva,%20A.M.L.&rft.date=2004-11-01&rft.volume=19&rft.issue=4&rft.spage=1763&rft.epage=1770&rft.pages=1763-1770&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2004.835633&rft_dat=%3Cproquest_RIE%3E28644676%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883856039&rft_id=info:pmid/&rft_ieee_id=1350812&rfr_iscdi=true