A phase-locked pulsewidth control loop with programmable duty cycle

The new proposed phase-locked pulsewidth control loop (PWCL) focus on variable duty cycle of output clock and synchronizes the input clock and output clock. The conventional PWCL can adjust duty cycle but can't synchronize the input and output clocks. By using synchronous mirror delay (SMD) and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kuo-Hsing Cheng, Chia-Wei Su, Chen-Lung Wu, Yu-Lung Lo
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 87
container_issue
container_start_page 84
container_title
container_volume
creator Kuo-Hsing Cheng
Chia-Wei Su
Chen-Lung Wu
Yu-Lung Lo
description The new proposed phase-locked pulsewidth control loop (PWCL) focus on variable duty cycle of output clock and synchronizes the input clock and output clock. The conventional PWCL can adjust duty cycle but can't synchronize the input and output clocks. By using synchronous mirror delay (SMD) and binary-weighted controlled in charge pump, we can not only achieve the synchronization of the input and output clocks but also vary the duty cycle of the output clock. The HSPICE simulation results are based on TSMC 0.18 /spl mu/m 1P6M N-well CMOS process. The simulation results show that the proposed PWCL can operate from 250MHz to 400MHz, the duty cycle range of input clock can be operated from 20% to 75%. Moreover, the duty cycle of output clock can be adjusted from 20% to 50% in step of 5%. When the input clock frequency is 250MHz and 400MHz, the power dissipation are 13mW and 20mW, respectively.
doi_str_mv 10.1109/APASIC.2004.1349412
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1349412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1349412</ieee_id><sourcerecordid>1349412</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c6a09c3a7fde5da14d1d00c29901f8abd61b428de237596570286c104bf957d03</originalsourceid><addsrcrecordid>eNotj8tqwzAURAWl0DbNF2SjH7B7ryTrsTSmj0AghWbRXZAluXErV8Z2CP77GprZDByYA0PIBiFHBPNUvpcf2ypnACJHLoxAdkMeQGngWnL1eUfW4_gNS7jhBbJ7UpW0P9kxZDG5n-Bpf45juLR-OlGXfqchRRpT6umlXUg_pK_Bdp2tY6D-PM3UzS6GR3Lb2GW2vvaKHF6eD9Vbttu_bqtyl7UGpsxJC8ZxqxofCm9RePQAjhkD2Ghbe4m1YNoHxlVhZKGAaekQRN2YQnngK7L517YhhGM_tJ0d5uP1Jv8DfJdJQA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A phase-locked pulsewidth control loop with programmable duty cycle</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kuo-Hsing Cheng ; Chia-Wei Su ; Chen-Lung Wu ; Yu-Lung Lo</creator><creatorcontrib>Kuo-Hsing Cheng ; Chia-Wei Su ; Chen-Lung Wu ; Yu-Lung Lo</creatorcontrib><description>The new proposed phase-locked pulsewidth control loop (PWCL) focus on variable duty cycle of output clock and synchronizes the input clock and output clock. The conventional PWCL can adjust duty cycle but can't synchronize the input and output clocks. By using synchronous mirror delay (SMD) and binary-weighted controlled in charge pump, we can not only achieve the synchronization of the input and output clocks but also vary the duty cycle of the output clock. The HSPICE simulation results are based on TSMC 0.18 /spl mu/m 1P6M N-well CMOS process. The simulation results show that the proposed PWCL can operate from 250MHz to 400MHz, the duty cycle range of input clock can be operated from 20% to 75%. Moreover, the duty cycle of output clock can be adjusted from 20% to 50% in step of 5%. When the input clock frequency is 250MHz and 400MHz, the power dissipation are 13mW and 20mW, respectively.</description><identifier>ISBN: 078038637X</identifier><identifier>ISBN: 9780780386372</identifier><identifier>DOI: 10.1109/APASIC.2004.1349412</identifier><language>eng</language><publisher>IEEE</publisher><subject>Charge pumps ; Circuits ; Clocks ; Delay ; Electric variables control ; Frequency synchronization ; Pipelines ; Signal sampling ; Space vector pulse width modulation ; Voltage</subject><ispartof>Proceedings of 2004 IEEE Asia-Pacific Conference on Advanced System Integrated Circuits, 2004, p.84-87</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1349412$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1349412$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kuo-Hsing Cheng</creatorcontrib><creatorcontrib>Chia-Wei Su</creatorcontrib><creatorcontrib>Chen-Lung Wu</creatorcontrib><creatorcontrib>Yu-Lung Lo</creatorcontrib><title>A phase-locked pulsewidth control loop with programmable duty cycle</title><title>Proceedings of 2004 IEEE Asia-Pacific Conference on Advanced System Integrated Circuits</title><addtitle>APASIC</addtitle><description>The new proposed phase-locked pulsewidth control loop (PWCL) focus on variable duty cycle of output clock and synchronizes the input clock and output clock. The conventional PWCL can adjust duty cycle but can't synchronize the input and output clocks. By using synchronous mirror delay (SMD) and binary-weighted controlled in charge pump, we can not only achieve the synchronization of the input and output clocks but also vary the duty cycle of the output clock. The HSPICE simulation results are based on TSMC 0.18 /spl mu/m 1P6M N-well CMOS process. The simulation results show that the proposed PWCL can operate from 250MHz to 400MHz, the duty cycle range of input clock can be operated from 20% to 75%. Moreover, the duty cycle of output clock can be adjusted from 20% to 50% in step of 5%. When the input clock frequency is 250MHz and 400MHz, the power dissipation are 13mW and 20mW, respectively.</description><subject>Charge pumps</subject><subject>Circuits</subject><subject>Clocks</subject><subject>Delay</subject><subject>Electric variables control</subject><subject>Frequency synchronization</subject><subject>Pipelines</subject><subject>Signal sampling</subject><subject>Space vector pulse width modulation</subject><subject>Voltage</subject><isbn>078038637X</isbn><isbn>9780780386372</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tqwzAURAWl0DbNF2SjH7B7ryTrsTSmj0AghWbRXZAluXErV8Z2CP77GprZDByYA0PIBiFHBPNUvpcf2ypnACJHLoxAdkMeQGngWnL1eUfW4_gNS7jhBbJ7UpW0P9kxZDG5n-Bpf45juLR-OlGXfqchRRpT6umlXUg_pK_Bdp2tY6D-PM3UzS6GR3Lb2GW2vvaKHF6eD9Vbttu_bqtyl7UGpsxJC8ZxqxofCm9RePQAjhkD2Ghbe4m1YNoHxlVhZKGAaekQRN2YQnngK7L517YhhGM_tJ0d5uP1Jv8DfJdJQA</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Kuo-Hsing Cheng</creator><creator>Chia-Wei Su</creator><creator>Chen-Lung Wu</creator><creator>Yu-Lung Lo</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>A phase-locked pulsewidth control loop with programmable duty cycle</title><author>Kuo-Hsing Cheng ; Chia-Wei Su ; Chen-Lung Wu ; Yu-Lung Lo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c6a09c3a7fde5da14d1d00c29901f8abd61b428de237596570286c104bf957d03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Charge pumps</topic><topic>Circuits</topic><topic>Clocks</topic><topic>Delay</topic><topic>Electric variables control</topic><topic>Frequency synchronization</topic><topic>Pipelines</topic><topic>Signal sampling</topic><topic>Space vector pulse width modulation</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Kuo-Hsing Cheng</creatorcontrib><creatorcontrib>Chia-Wei Su</creatorcontrib><creatorcontrib>Chen-Lung Wu</creatorcontrib><creatorcontrib>Yu-Lung Lo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuo-Hsing Cheng</au><au>Chia-Wei Su</au><au>Chen-Lung Wu</au><au>Yu-Lung Lo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A phase-locked pulsewidth control loop with programmable duty cycle</atitle><btitle>Proceedings of 2004 IEEE Asia-Pacific Conference on Advanced System Integrated Circuits</btitle><stitle>APASIC</stitle><date>2004</date><risdate>2004</risdate><spage>84</spage><epage>87</epage><pages>84-87</pages><isbn>078038637X</isbn><isbn>9780780386372</isbn><abstract>The new proposed phase-locked pulsewidth control loop (PWCL) focus on variable duty cycle of output clock and synchronizes the input clock and output clock. The conventional PWCL can adjust duty cycle but can't synchronize the input and output clocks. By using synchronous mirror delay (SMD) and binary-weighted controlled in charge pump, we can not only achieve the synchronization of the input and output clocks but also vary the duty cycle of the output clock. The HSPICE simulation results are based on TSMC 0.18 /spl mu/m 1P6M N-well CMOS process. The simulation results show that the proposed PWCL can operate from 250MHz to 400MHz, the duty cycle range of input clock can be operated from 20% to 75%. Moreover, the duty cycle of output clock can be adjusted from 20% to 50% in step of 5%. When the input clock frequency is 250MHz and 400MHz, the power dissipation are 13mW and 20mW, respectively.</abstract><pub>IEEE</pub><doi>10.1109/APASIC.2004.1349412</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 078038637X
ispartof Proceedings of 2004 IEEE Asia-Pacific Conference on Advanced System Integrated Circuits, 2004, p.84-87
issn
language eng
recordid cdi_ieee_primary_1349412
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Charge pumps
Circuits
Clocks
Delay
Electric variables control
Frequency synchronization
Pipelines
Signal sampling
Space vector pulse width modulation
Voltage
title A phase-locked pulsewidth control loop with programmable duty cycle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20phase-locked%20pulsewidth%20control%20loop%20with%20programmable%20duty%20cycle&rft.btitle=Proceedings%20of%202004%20IEEE%20Asia-Pacific%20Conference%20on%20Advanced%20System%20Integrated%20Circuits&rft.au=Kuo-Hsing%20Cheng&rft.date=2004&rft.spage=84&rft.epage=87&rft.pages=84-87&rft.isbn=078038637X&rft.isbn_list=9780780386372&rft_id=info:doi/10.1109/APASIC.2004.1349412&rft_dat=%3Cieee_6IE%3E1349412%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1349412&rfr_iscdi=true