A phase-locked pulsewidth control loop with programmable duty cycle
The new proposed phase-locked pulsewidth control loop (PWCL) focus on variable duty cycle of output clock and synchronizes the input clock and output clock. The conventional PWCL can adjust duty cycle but can't synchronize the input and output clocks. By using synchronous mirror delay (SMD) and...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 87 |
---|---|
container_issue | |
container_start_page | 84 |
container_title | |
container_volume | |
creator | Kuo-Hsing Cheng Chia-Wei Su Chen-Lung Wu Yu-Lung Lo |
description | The new proposed phase-locked pulsewidth control loop (PWCL) focus on variable duty cycle of output clock and synchronizes the input clock and output clock. The conventional PWCL can adjust duty cycle but can't synchronize the input and output clocks. By using synchronous mirror delay (SMD) and binary-weighted controlled in charge pump, we can not only achieve the synchronization of the input and output clocks but also vary the duty cycle of the output clock. The HSPICE simulation results are based on TSMC 0.18 /spl mu/m 1P6M N-well CMOS process. The simulation results show that the proposed PWCL can operate from 250MHz to 400MHz, the duty cycle range of input clock can be operated from 20% to 75%. Moreover, the duty cycle of output clock can be adjusted from 20% to 50% in step of 5%. When the input clock frequency is 250MHz and 400MHz, the power dissipation are 13mW and 20mW, respectively. |
doi_str_mv | 10.1109/APASIC.2004.1349412 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1349412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1349412</ieee_id><sourcerecordid>1349412</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c6a09c3a7fde5da14d1d00c29901f8abd61b428de237596570286c104bf957d03</originalsourceid><addsrcrecordid>eNotj8tqwzAURAWl0DbNF2SjH7B7ryTrsTSmj0AghWbRXZAluXErV8Z2CP77GprZDByYA0PIBiFHBPNUvpcf2ypnACJHLoxAdkMeQGngWnL1eUfW4_gNS7jhBbJ7UpW0P9kxZDG5n-Bpf45juLR-OlGXfqchRRpT6umlXUg_pK_Bdp2tY6D-PM3UzS6GR3Lb2GW2vvaKHF6eD9Vbttu_bqtyl7UGpsxJC8ZxqxofCm9RePQAjhkD2Ghbe4m1YNoHxlVhZKGAaekQRN2YQnngK7L517YhhGM_tJ0d5uP1Jv8DfJdJQA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A phase-locked pulsewidth control loop with programmable duty cycle</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kuo-Hsing Cheng ; Chia-Wei Su ; Chen-Lung Wu ; Yu-Lung Lo</creator><creatorcontrib>Kuo-Hsing Cheng ; Chia-Wei Su ; Chen-Lung Wu ; Yu-Lung Lo</creatorcontrib><description>The new proposed phase-locked pulsewidth control loop (PWCL) focus on variable duty cycle of output clock and synchronizes the input clock and output clock. The conventional PWCL can adjust duty cycle but can't synchronize the input and output clocks. By using synchronous mirror delay (SMD) and binary-weighted controlled in charge pump, we can not only achieve the synchronization of the input and output clocks but also vary the duty cycle of the output clock. The HSPICE simulation results are based on TSMC 0.18 /spl mu/m 1P6M N-well CMOS process. The simulation results show that the proposed PWCL can operate from 250MHz to 400MHz, the duty cycle range of input clock can be operated from 20% to 75%. Moreover, the duty cycle of output clock can be adjusted from 20% to 50% in step of 5%. When the input clock frequency is 250MHz and 400MHz, the power dissipation are 13mW and 20mW, respectively.</description><identifier>ISBN: 078038637X</identifier><identifier>ISBN: 9780780386372</identifier><identifier>DOI: 10.1109/APASIC.2004.1349412</identifier><language>eng</language><publisher>IEEE</publisher><subject>Charge pumps ; Circuits ; Clocks ; Delay ; Electric variables control ; Frequency synchronization ; Pipelines ; Signal sampling ; Space vector pulse width modulation ; Voltage</subject><ispartof>Proceedings of 2004 IEEE Asia-Pacific Conference on Advanced System Integrated Circuits, 2004, p.84-87</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1349412$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1349412$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kuo-Hsing Cheng</creatorcontrib><creatorcontrib>Chia-Wei Su</creatorcontrib><creatorcontrib>Chen-Lung Wu</creatorcontrib><creatorcontrib>Yu-Lung Lo</creatorcontrib><title>A phase-locked pulsewidth control loop with programmable duty cycle</title><title>Proceedings of 2004 IEEE Asia-Pacific Conference on Advanced System Integrated Circuits</title><addtitle>APASIC</addtitle><description>The new proposed phase-locked pulsewidth control loop (PWCL) focus on variable duty cycle of output clock and synchronizes the input clock and output clock. The conventional PWCL can adjust duty cycle but can't synchronize the input and output clocks. By using synchronous mirror delay (SMD) and binary-weighted controlled in charge pump, we can not only achieve the synchronization of the input and output clocks but also vary the duty cycle of the output clock. The HSPICE simulation results are based on TSMC 0.18 /spl mu/m 1P6M N-well CMOS process. The simulation results show that the proposed PWCL can operate from 250MHz to 400MHz, the duty cycle range of input clock can be operated from 20% to 75%. Moreover, the duty cycle of output clock can be adjusted from 20% to 50% in step of 5%. When the input clock frequency is 250MHz and 400MHz, the power dissipation are 13mW and 20mW, respectively.</description><subject>Charge pumps</subject><subject>Circuits</subject><subject>Clocks</subject><subject>Delay</subject><subject>Electric variables control</subject><subject>Frequency synchronization</subject><subject>Pipelines</subject><subject>Signal sampling</subject><subject>Space vector pulse width modulation</subject><subject>Voltage</subject><isbn>078038637X</isbn><isbn>9780780386372</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tqwzAURAWl0DbNF2SjH7B7ryTrsTSmj0AghWbRXZAluXErV8Z2CP77GprZDByYA0PIBiFHBPNUvpcf2ypnACJHLoxAdkMeQGngWnL1eUfW4_gNS7jhBbJ7UpW0P9kxZDG5n-Bpf45juLR-OlGXfqchRRpT6umlXUg_pK_Bdp2tY6D-PM3UzS6GR3Lb2GW2vvaKHF6eD9Vbttu_bqtyl7UGpsxJC8ZxqxofCm9RePQAjhkD2Ghbe4m1YNoHxlVhZKGAaekQRN2YQnngK7L517YhhGM_tJ0d5uP1Jv8DfJdJQA</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Kuo-Hsing Cheng</creator><creator>Chia-Wei Su</creator><creator>Chen-Lung Wu</creator><creator>Yu-Lung Lo</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>A phase-locked pulsewidth control loop with programmable duty cycle</title><author>Kuo-Hsing Cheng ; Chia-Wei Su ; Chen-Lung Wu ; Yu-Lung Lo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c6a09c3a7fde5da14d1d00c29901f8abd61b428de237596570286c104bf957d03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Charge pumps</topic><topic>Circuits</topic><topic>Clocks</topic><topic>Delay</topic><topic>Electric variables control</topic><topic>Frequency synchronization</topic><topic>Pipelines</topic><topic>Signal sampling</topic><topic>Space vector pulse width modulation</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Kuo-Hsing Cheng</creatorcontrib><creatorcontrib>Chia-Wei Su</creatorcontrib><creatorcontrib>Chen-Lung Wu</creatorcontrib><creatorcontrib>Yu-Lung Lo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuo-Hsing Cheng</au><au>Chia-Wei Su</au><au>Chen-Lung Wu</au><au>Yu-Lung Lo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A phase-locked pulsewidth control loop with programmable duty cycle</atitle><btitle>Proceedings of 2004 IEEE Asia-Pacific Conference on Advanced System Integrated Circuits</btitle><stitle>APASIC</stitle><date>2004</date><risdate>2004</risdate><spage>84</spage><epage>87</epage><pages>84-87</pages><isbn>078038637X</isbn><isbn>9780780386372</isbn><abstract>The new proposed phase-locked pulsewidth control loop (PWCL) focus on variable duty cycle of output clock and synchronizes the input clock and output clock. The conventional PWCL can adjust duty cycle but can't synchronize the input and output clocks. By using synchronous mirror delay (SMD) and binary-weighted controlled in charge pump, we can not only achieve the synchronization of the input and output clocks but also vary the duty cycle of the output clock. The HSPICE simulation results are based on TSMC 0.18 /spl mu/m 1P6M N-well CMOS process. The simulation results show that the proposed PWCL can operate from 250MHz to 400MHz, the duty cycle range of input clock can be operated from 20% to 75%. Moreover, the duty cycle of output clock can be adjusted from 20% to 50% in step of 5%. When the input clock frequency is 250MHz and 400MHz, the power dissipation are 13mW and 20mW, respectively.</abstract><pub>IEEE</pub><doi>10.1109/APASIC.2004.1349412</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 078038637X |
ispartof | Proceedings of 2004 IEEE Asia-Pacific Conference on Advanced System Integrated Circuits, 2004, p.84-87 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1349412 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Charge pumps Circuits Clocks Delay Electric variables control Frequency synchronization Pipelines Signal sampling Space vector pulse width modulation Voltage |
title | A phase-locked pulsewidth control loop with programmable duty cycle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20phase-locked%20pulsewidth%20control%20loop%20with%20programmable%20duty%20cycle&rft.btitle=Proceedings%20of%202004%20IEEE%20Asia-Pacific%20Conference%20on%20Advanced%20System%20Integrated%20Circuits&rft.au=Kuo-Hsing%20Cheng&rft.date=2004&rft.spage=84&rft.epage=87&rft.pages=84-87&rft.isbn=078038637X&rft.isbn_list=9780780386372&rft_id=info:doi/10.1109/APASIC.2004.1349412&rft_dat=%3Cieee_6IE%3E1349412%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1349412&rfr_iscdi=true |