Architecture and trajectory constraint control of a five bar Cobot

Cobot (collaborative robot) doesn't have any motive power of its own, so it can do direct collaborative work with a human operator in a shared workspace. In this paper a five bar Cobot and its trajectory constraint control strategy are presented. The Cobot uses two new CVTs (continuously variab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dunmin Lu, Lixun Zhang, Lan Wang, Jinhua Shen
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4963 Vol.6
container_issue
container_start_page 4960
container_title
container_volume 6
creator Dunmin Lu
Lixun Zhang
Lan Wang
Jinhua Shen
description Cobot (collaborative robot) doesn't have any motive power of its own, so it can do direct collaborative work with a human operator in a shared workspace. In this paper a five bar Cobot and its trajectory constraint control strategy are presented. The Cobot uses two new CVTs (continuously variable transmissions) that are connected in parallel mode, which are separately installed on the two base joints of the Cobot. The CVT is composed of two DC motors, two unilateral over-running clutches and so on. The constraint control of the Cobot endpoint trajectory was implemented by regulating the speed of each CVT. In addition the trajectory constraint control strategy involves in actual position, speed of the Cobot endpoint and the force applied by a human operator. An experiment prototype of Cobot was developed, and the experiment results show that the Cobot architecture and the trajectory constraint control strategy are feasible.
doi_str_mv 10.1109/WCICA.2004.1343657
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1343657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1343657</ieee_id><sourcerecordid>1343657</sourcerecordid><originalsourceid>FETCH-ieee_primary_13436573</originalsourceid><addsrcrecordid>eNp9jkEKwjAURAMiKNoL6OZfwJo0qW2XNSi6F1yWtKaYUhv5iUJvbwTXDgMzj9kMIStGY8Zosb3KsyzjhFIRMy74Ls0mJCqynAbzPMl4MiORcx0N4kUqqJiTfYnN3Xjd-BdqUMMNPKouoMURGju4gGbw3-rR9mBbUNCat4ZaIUhbW78k01b1Tke_XJD18XCRp43RWldPNA-FY_V7xP-vH_9AOnk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Architecture and trajectory constraint control of a five bar Cobot</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dunmin Lu ; Lixun Zhang ; Lan Wang ; Jinhua Shen</creator><creatorcontrib>Dunmin Lu ; Lixun Zhang ; Lan Wang ; Jinhua Shen</creatorcontrib><description>Cobot (collaborative robot) doesn't have any motive power of its own, so it can do direct collaborative work with a human operator in a shared workspace. In this paper a five bar Cobot and its trajectory constraint control strategy are presented. The Cobot uses two new CVTs (continuously variable transmissions) that are connected in parallel mode, which are separately installed on the two base joints of the Cobot. The CVT is composed of two DC motors, two unilateral over-running clutches and so on. The constraint control of the Cobot endpoint trajectory was implemented by regulating the speed of each CVT. In addition the trajectory constraint control strategy involves in actual position, speed of the Cobot endpoint and the force applied by a human operator. An experiment prototype of Cobot was developed, and the experiment results show that the Cobot architecture and the trajectory constraint control strategy are feasible.</description><identifier>ISBN: 9780780382732</identifier><identifier>ISBN: 0780382730</identifier><identifier>DOI: 10.1109/WCICA.2004.1343657</identifier><language>eng</language><publisher>IEEE</publisher><subject>Collaborative work ; DC motors ; Educational institutions ; Electric variables control ; Force control ; Mechanical power transmission ; Mechanical variables control ; Power engineering and energy ; Robots ; Strain control</subject><ispartof>Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No.04EX788), 2004, Vol.6, p.4960-4963 Vol.6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1343657$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1343657$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dunmin Lu</creatorcontrib><creatorcontrib>Lixun Zhang</creatorcontrib><creatorcontrib>Lan Wang</creatorcontrib><creatorcontrib>Jinhua Shen</creatorcontrib><title>Architecture and trajectory constraint control of a five bar Cobot</title><title>Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No.04EX788)</title><addtitle>WCICA</addtitle><description>Cobot (collaborative robot) doesn't have any motive power of its own, so it can do direct collaborative work with a human operator in a shared workspace. In this paper a five bar Cobot and its trajectory constraint control strategy are presented. The Cobot uses two new CVTs (continuously variable transmissions) that are connected in parallel mode, which are separately installed on the two base joints of the Cobot. The CVT is composed of two DC motors, two unilateral over-running clutches and so on. The constraint control of the Cobot endpoint trajectory was implemented by regulating the speed of each CVT. In addition the trajectory constraint control strategy involves in actual position, speed of the Cobot endpoint and the force applied by a human operator. An experiment prototype of Cobot was developed, and the experiment results show that the Cobot architecture and the trajectory constraint control strategy are feasible.</description><subject>Collaborative work</subject><subject>DC motors</subject><subject>Educational institutions</subject><subject>Electric variables control</subject><subject>Force control</subject><subject>Mechanical power transmission</subject><subject>Mechanical variables control</subject><subject>Power engineering and energy</subject><subject>Robots</subject><subject>Strain control</subject><isbn>9780780382732</isbn><isbn>0780382730</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jkEKwjAURAMiKNoL6OZfwJo0qW2XNSi6F1yWtKaYUhv5iUJvbwTXDgMzj9kMIStGY8Zosb3KsyzjhFIRMy74Ls0mJCqynAbzPMl4MiORcx0N4kUqqJiTfYnN3Xjd-BdqUMMNPKouoMURGju4gGbw3-rR9mBbUNCat4ZaIUhbW78k01b1Tke_XJD18XCRp43RWldPNA-FY_V7xP-vH_9AOnk</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Dunmin Lu</creator><creator>Lixun Zhang</creator><creator>Lan Wang</creator><creator>Jinhua Shen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>Architecture and trajectory constraint control of a five bar Cobot</title><author>Dunmin Lu ; Lixun Zhang ; Lan Wang ; Jinhua Shen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_13436573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Collaborative work</topic><topic>DC motors</topic><topic>Educational institutions</topic><topic>Electric variables control</topic><topic>Force control</topic><topic>Mechanical power transmission</topic><topic>Mechanical variables control</topic><topic>Power engineering and energy</topic><topic>Robots</topic><topic>Strain control</topic><toplevel>online_resources</toplevel><creatorcontrib>Dunmin Lu</creatorcontrib><creatorcontrib>Lixun Zhang</creatorcontrib><creatorcontrib>Lan Wang</creatorcontrib><creatorcontrib>Jinhua Shen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dunmin Lu</au><au>Lixun Zhang</au><au>Lan Wang</au><au>Jinhua Shen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Architecture and trajectory constraint control of a five bar Cobot</atitle><btitle>Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No.04EX788)</btitle><stitle>WCICA</stitle><date>2004</date><risdate>2004</risdate><volume>6</volume><spage>4960</spage><epage>4963 Vol.6</epage><pages>4960-4963 Vol.6</pages><isbn>9780780382732</isbn><isbn>0780382730</isbn><abstract>Cobot (collaborative robot) doesn't have any motive power of its own, so it can do direct collaborative work with a human operator in a shared workspace. In this paper a five bar Cobot and its trajectory constraint control strategy are presented. The Cobot uses two new CVTs (continuously variable transmissions) that are connected in parallel mode, which are separately installed on the two base joints of the Cobot. The CVT is composed of two DC motors, two unilateral over-running clutches and so on. The constraint control of the Cobot endpoint trajectory was implemented by regulating the speed of each CVT. In addition the trajectory constraint control strategy involves in actual position, speed of the Cobot endpoint and the force applied by a human operator. An experiment prototype of Cobot was developed, and the experiment results show that the Cobot architecture and the trajectory constraint control strategy are feasible.</abstract><pub>IEEE</pub><doi>10.1109/WCICA.2004.1343657</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780382732
ispartof Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No.04EX788), 2004, Vol.6, p.4960-4963 Vol.6
issn
language eng
recordid cdi_ieee_primary_1343657
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Collaborative work
DC motors
Educational institutions
Electric variables control
Force control
Mechanical power transmission
Mechanical variables control
Power engineering and energy
Robots
Strain control
title Architecture and trajectory constraint control of a five bar Cobot
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Architecture%20and%20trajectory%20constraint%20control%20of%20a%20five%20bar%20Cobot&rft.btitle=Fifth%20World%20Congress%20on%20Intelligent%20Control%20and%20Automation%20(IEEE%20Cat.%20No.04EX788)&rft.au=Dunmin%20Lu&rft.date=2004&rft.volume=6&rft.spage=4960&rft.epage=4963%20Vol.6&rft.pages=4960-4963%20Vol.6&rft.isbn=9780780382732&rft.isbn_list=0780382730&rft_id=info:doi/10.1109/WCICA.2004.1343657&rft_dat=%3Cieee_6IE%3E1343657%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1343657&rfr_iscdi=true