Architecture and trajectory constraint control of a five bar Cobot
Cobot (collaborative robot) doesn't have any motive power of its own, so it can do direct collaborative work with a human operator in a shared workspace. In this paper a five bar Cobot and its trajectory constraint control strategy are presented. The Cobot uses two new CVTs (continuously variab...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4963 Vol.6 |
---|---|
container_issue | |
container_start_page | 4960 |
container_title | |
container_volume | 6 |
creator | Dunmin Lu Lixun Zhang Lan Wang Jinhua Shen |
description | Cobot (collaborative robot) doesn't have any motive power of its own, so it can do direct collaborative work with a human operator in a shared workspace. In this paper a five bar Cobot and its trajectory constraint control strategy are presented. The Cobot uses two new CVTs (continuously variable transmissions) that are connected in parallel mode, which are separately installed on the two base joints of the Cobot. The CVT is composed of two DC motors, two unilateral over-running clutches and so on. The constraint control of the Cobot endpoint trajectory was implemented by regulating the speed of each CVT. In addition the trajectory constraint control strategy involves in actual position, speed of the Cobot endpoint and the force applied by a human operator. An experiment prototype of Cobot was developed, and the experiment results show that the Cobot architecture and the trajectory constraint control strategy are feasible. |
doi_str_mv | 10.1109/WCICA.2004.1343657 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1343657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1343657</ieee_id><sourcerecordid>1343657</sourcerecordid><originalsourceid>FETCH-ieee_primary_13436573</originalsourceid><addsrcrecordid>eNp9jkEKwjAURAMiKNoL6OZfwJo0qW2XNSi6F1yWtKaYUhv5iUJvbwTXDgMzj9kMIStGY8Zosb3KsyzjhFIRMy74Ls0mJCqynAbzPMl4MiORcx0N4kUqqJiTfYnN3Xjd-BdqUMMNPKouoMURGju4gGbw3-rR9mBbUNCat4ZaIUhbW78k01b1Tke_XJD18XCRp43RWldPNA-FY_V7xP-vH_9AOnk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Architecture and trajectory constraint control of a five bar Cobot</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dunmin Lu ; Lixun Zhang ; Lan Wang ; Jinhua Shen</creator><creatorcontrib>Dunmin Lu ; Lixun Zhang ; Lan Wang ; Jinhua Shen</creatorcontrib><description>Cobot (collaborative robot) doesn't have any motive power of its own, so it can do direct collaborative work with a human operator in a shared workspace. In this paper a five bar Cobot and its trajectory constraint control strategy are presented. The Cobot uses two new CVTs (continuously variable transmissions) that are connected in parallel mode, which are separately installed on the two base joints of the Cobot. The CVT is composed of two DC motors, two unilateral over-running clutches and so on. The constraint control of the Cobot endpoint trajectory was implemented by regulating the speed of each CVT. In addition the trajectory constraint control strategy involves in actual position, speed of the Cobot endpoint and the force applied by a human operator. An experiment prototype of Cobot was developed, and the experiment results show that the Cobot architecture and the trajectory constraint control strategy are feasible.</description><identifier>ISBN: 9780780382732</identifier><identifier>ISBN: 0780382730</identifier><identifier>DOI: 10.1109/WCICA.2004.1343657</identifier><language>eng</language><publisher>IEEE</publisher><subject>Collaborative work ; DC motors ; Educational institutions ; Electric variables control ; Force control ; Mechanical power transmission ; Mechanical variables control ; Power engineering and energy ; Robots ; Strain control</subject><ispartof>Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No.04EX788), 2004, Vol.6, p.4960-4963 Vol.6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1343657$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1343657$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dunmin Lu</creatorcontrib><creatorcontrib>Lixun Zhang</creatorcontrib><creatorcontrib>Lan Wang</creatorcontrib><creatorcontrib>Jinhua Shen</creatorcontrib><title>Architecture and trajectory constraint control of a five bar Cobot</title><title>Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No.04EX788)</title><addtitle>WCICA</addtitle><description>Cobot (collaborative robot) doesn't have any motive power of its own, so it can do direct collaborative work with a human operator in a shared workspace. In this paper a five bar Cobot and its trajectory constraint control strategy are presented. The Cobot uses two new CVTs (continuously variable transmissions) that are connected in parallel mode, which are separately installed on the two base joints of the Cobot. The CVT is composed of two DC motors, two unilateral over-running clutches and so on. The constraint control of the Cobot endpoint trajectory was implemented by regulating the speed of each CVT. In addition the trajectory constraint control strategy involves in actual position, speed of the Cobot endpoint and the force applied by a human operator. An experiment prototype of Cobot was developed, and the experiment results show that the Cobot architecture and the trajectory constraint control strategy are feasible.</description><subject>Collaborative work</subject><subject>DC motors</subject><subject>Educational institutions</subject><subject>Electric variables control</subject><subject>Force control</subject><subject>Mechanical power transmission</subject><subject>Mechanical variables control</subject><subject>Power engineering and energy</subject><subject>Robots</subject><subject>Strain control</subject><isbn>9780780382732</isbn><isbn>0780382730</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jkEKwjAURAMiKNoL6OZfwJo0qW2XNSi6F1yWtKaYUhv5iUJvbwTXDgMzj9kMIStGY8Zosb3KsyzjhFIRMy74Ls0mJCqynAbzPMl4MiORcx0N4kUqqJiTfYnN3Xjd-BdqUMMNPKouoMURGju4gGbw3-rR9mBbUNCat4ZaIUhbW78k01b1Tke_XJD18XCRp43RWldPNA-FY_V7xP-vH_9AOnk</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Dunmin Lu</creator><creator>Lixun Zhang</creator><creator>Lan Wang</creator><creator>Jinhua Shen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>Architecture and trajectory constraint control of a five bar Cobot</title><author>Dunmin Lu ; Lixun Zhang ; Lan Wang ; Jinhua Shen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_13436573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Collaborative work</topic><topic>DC motors</topic><topic>Educational institutions</topic><topic>Electric variables control</topic><topic>Force control</topic><topic>Mechanical power transmission</topic><topic>Mechanical variables control</topic><topic>Power engineering and energy</topic><topic>Robots</topic><topic>Strain control</topic><toplevel>online_resources</toplevel><creatorcontrib>Dunmin Lu</creatorcontrib><creatorcontrib>Lixun Zhang</creatorcontrib><creatorcontrib>Lan Wang</creatorcontrib><creatorcontrib>Jinhua Shen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dunmin Lu</au><au>Lixun Zhang</au><au>Lan Wang</au><au>Jinhua Shen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Architecture and trajectory constraint control of a five bar Cobot</atitle><btitle>Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No.04EX788)</btitle><stitle>WCICA</stitle><date>2004</date><risdate>2004</risdate><volume>6</volume><spage>4960</spage><epage>4963 Vol.6</epage><pages>4960-4963 Vol.6</pages><isbn>9780780382732</isbn><isbn>0780382730</isbn><abstract>Cobot (collaborative robot) doesn't have any motive power of its own, so it can do direct collaborative work with a human operator in a shared workspace. In this paper a five bar Cobot and its trajectory constraint control strategy are presented. The Cobot uses two new CVTs (continuously variable transmissions) that are connected in parallel mode, which are separately installed on the two base joints of the Cobot. The CVT is composed of two DC motors, two unilateral over-running clutches and so on. The constraint control of the Cobot endpoint trajectory was implemented by regulating the speed of each CVT. In addition the trajectory constraint control strategy involves in actual position, speed of the Cobot endpoint and the force applied by a human operator. An experiment prototype of Cobot was developed, and the experiment results show that the Cobot architecture and the trajectory constraint control strategy are feasible.</abstract><pub>IEEE</pub><doi>10.1109/WCICA.2004.1343657</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780382732 |
ispartof | Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No.04EX788), 2004, Vol.6, p.4960-4963 Vol.6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1343657 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Collaborative work DC motors Educational institutions Electric variables control Force control Mechanical power transmission Mechanical variables control Power engineering and energy Robots Strain control |
title | Architecture and trajectory constraint control of a five bar Cobot |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Architecture%20and%20trajectory%20constraint%20control%20of%20a%20five%20bar%20Cobot&rft.btitle=Fifth%20World%20Congress%20on%20Intelligent%20Control%20and%20Automation%20(IEEE%20Cat.%20No.04EX788)&rft.au=Dunmin%20Lu&rft.date=2004&rft.volume=6&rft.spage=4960&rft.epage=4963%20Vol.6&rft.pages=4960-4963%20Vol.6&rft.isbn=9780780382732&rft.isbn_list=0780382730&rft_id=info:doi/10.1109/WCICA.2004.1343657&rft_dat=%3Cieee_6IE%3E1343657%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1343657&rfr_iscdi=true |