N-gram-based detection of new malicious code

The current commercial anti-virus software detects a virus only after the virus has appeared and caused damage. Motivated by the standard signature-based technique for detecting viruses, and a recent successful text classification method, we explore the idea of automatically detecting new malicious...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Abou-Assaleh, T., Cercone, N., Keselj, V., Sweidan, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The current commercial anti-virus software detects a virus only after the virus has appeared and caused damage. Motivated by the standard signature-based technique for detecting viruses, and a recent successful text classification method, we explore the idea of automatically detecting new malicious code using the collected dataset of the benign and malicious code. We obtained accuracy of 100% in the training data, and 98% in 3-fold cross-validation.
ISSN:0730-3157
DOI:10.1109/CMPSAC.2004.1342667