Efficient data-structures and parallel algorithms for association rules discovery
Discovering patterns or frequent episodes in transactions is an important problem in data mining for the purpose of infering deductive rules from them. Because of the huge size of the data to deal with, parallel algorithms have been designed for reducing both the execution time and the number of rep...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 406 |
---|---|
container_issue | |
container_start_page | 399 |
container_title | |
container_volume | |
creator | Cerin, C. Gay, J.-S. Le Mahec, G. Koskas, M. |
description | Discovering patterns or frequent episodes in transactions is an important problem in data mining for the purpose of infering deductive rules from them. Because of the huge size of the data to deal with, parallel algorithms have been designed for reducing both the execution time and the number of repeated passes over the database in order to reduce, as much as possible, I/O overheads. In this paper, we introduce approaches for the implementation of two basic algorithms for association rules discovery (namely Apriori and Eclat). Our approaches combine efficient data structures to code different key information (line indexes, candidates) and we exhibit how to introduce parallelism for processing such data-structures. |
doi_str_mv | 10.1109/ENC.2004.1342634 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1342634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1342634</ieee_id><sourcerecordid>1342634</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a6a66f7a922bc81eeb9c169bf0c301895d83ec92dc9eabf6911545b7e052f1293</originalsourceid><addsrcrecordid>eNotj8FKxDAURQMiqOPsBTf5gda8tEmbpZSqA4Mi6Hp4TV80kmmHJBXm7x1w7uZsDgcuY3cgSgBhHvrXrpRC1CVUtdRVfcFuRKONkqCFvmLrlH7EabUC0Zpr9t47562nKfMRMxYpx8XmJVLiOI38gBFDoMAxfM3R5-994m6OHFOarcfs54nHJZzs0Sc7_1I83rJLhyHR-swV-3zqP7qXYvv2vOket4WHRuUCNWrtGjRSDrYFosFY0GZwwlYCWqPGtiJr5GgN4eC0AVC1GhoSSjqQplqx-_-uJ6LdIfo9xuPu_Lr6AyXYTs4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Efficient data-structures and parallel algorithms for association rules discovery</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cerin, C. ; Gay, J.-S. ; Le Mahec, G. ; Koskas, M.</creator><creatorcontrib>Cerin, C. ; Gay, J.-S. ; Le Mahec, G. ; Koskas, M.</creatorcontrib><description>Discovering patterns or frequent episodes in transactions is an important problem in data mining for the purpose of infering deductive rules from them. Because of the huge size of the data to deal with, parallel algorithms have been designed for reducing both the execution time and the number of repeated passes over the database in order to reduce, as much as possible, I/O overheads. In this paper, we introduce approaches for the implementation of two basic algorithms for association rules discovery (namely Apriori and Eclat). Our approaches combine efficient data structures to code different key information (line indexes, candidates) and we exhibit how to introduce parallelism for processing such data-structures.</description><identifier>ISBN: 0769521606</identifier><identifier>ISBN: 9780769521602</identifier><identifier>DOI: 10.1109/ENC.2004.1342634</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Association rules ; Data mining ; Data structures ; Inference algorithms ; Itemsets ; Parallel algorithms ; Parallel processing ; Transaction databases ; Tree data structures</subject><ispartof>Proceedings of the Fifth Mexican International Conference in Computer Science, 2004. ENC 2004, 2004, p.399-406</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1342634$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4040,4041,27916,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1342634$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cerin, C.</creatorcontrib><creatorcontrib>Gay, J.-S.</creatorcontrib><creatorcontrib>Le Mahec, G.</creatorcontrib><creatorcontrib>Koskas, M.</creatorcontrib><title>Efficient data-structures and parallel algorithms for association rules discovery</title><title>Proceedings of the Fifth Mexican International Conference in Computer Science, 2004. ENC 2004</title><addtitle>ENC</addtitle><description>Discovering patterns or frequent episodes in transactions is an important problem in data mining for the purpose of infering deductive rules from them. Because of the huge size of the data to deal with, parallel algorithms have been designed for reducing both the execution time and the number of repeated passes over the database in order to reduce, as much as possible, I/O overheads. In this paper, we introduce approaches for the implementation of two basic algorithms for association rules discovery (namely Apriori and Eclat). Our approaches combine efficient data structures to code different key information (line indexes, candidates) and we exhibit how to introduce parallelism for processing such data-structures.</description><subject>Algorithm design and analysis</subject><subject>Association rules</subject><subject>Data mining</subject><subject>Data structures</subject><subject>Inference algorithms</subject><subject>Itemsets</subject><subject>Parallel algorithms</subject><subject>Parallel processing</subject><subject>Transaction databases</subject><subject>Tree data structures</subject><isbn>0769521606</isbn><isbn>9780769521602</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8FKxDAURQMiqOPsBTf5gda8tEmbpZSqA4Mi6Hp4TV80kmmHJBXm7x1w7uZsDgcuY3cgSgBhHvrXrpRC1CVUtdRVfcFuRKONkqCFvmLrlH7EabUC0Zpr9t47562nKfMRMxYpx8XmJVLiOI38gBFDoMAxfM3R5-994m6OHFOarcfs54nHJZzs0Sc7_1I83rJLhyHR-swV-3zqP7qXYvv2vOket4WHRuUCNWrtGjRSDrYFosFY0GZwwlYCWqPGtiJr5GgN4eC0AVC1GhoSSjqQplqx-_-uJ6LdIfo9xuPu_Lr6AyXYTs4</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Cerin, C.</creator><creator>Gay, J.-S.</creator><creator>Le Mahec, G.</creator><creator>Koskas, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>Efficient data-structures and parallel algorithms for association rules discovery</title><author>Cerin, C. ; Gay, J.-S. ; Le Mahec, G. ; Koskas, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a6a66f7a922bc81eeb9c169bf0c301895d83ec92dc9eabf6911545b7e052f1293</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithm design and analysis</topic><topic>Association rules</topic><topic>Data mining</topic><topic>Data structures</topic><topic>Inference algorithms</topic><topic>Itemsets</topic><topic>Parallel algorithms</topic><topic>Parallel processing</topic><topic>Transaction databases</topic><topic>Tree data structures</topic><toplevel>online_resources</toplevel><creatorcontrib>Cerin, C.</creatorcontrib><creatorcontrib>Gay, J.-S.</creatorcontrib><creatorcontrib>Le Mahec, G.</creatorcontrib><creatorcontrib>Koskas, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cerin, C.</au><au>Gay, J.-S.</au><au>Le Mahec, G.</au><au>Koskas, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Efficient data-structures and parallel algorithms for association rules discovery</atitle><btitle>Proceedings of the Fifth Mexican International Conference in Computer Science, 2004. ENC 2004</btitle><stitle>ENC</stitle><date>2004</date><risdate>2004</risdate><spage>399</spage><epage>406</epage><pages>399-406</pages><isbn>0769521606</isbn><isbn>9780769521602</isbn><abstract>Discovering patterns or frequent episodes in transactions is an important problem in data mining for the purpose of infering deductive rules from them. Because of the huge size of the data to deal with, parallel algorithms have been designed for reducing both the execution time and the number of repeated passes over the database in order to reduce, as much as possible, I/O overheads. In this paper, we introduce approaches for the implementation of two basic algorithms for association rules discovery (namely Apriori and Eclat). Our approaches combine efficient data structures to code different key information (line indexes, candidates) and we exhibit how to introduce parallelism for processing such data-structures.</abstract><pub>IEEE</pub><doi>10.1109/ENC.2004.1342634</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0769521606 |
ispartof | Proceedings of the Fifth Mexican International Conference in Computer Science, 2004. ENC 2004, 2004, p.399-406 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1342634 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Association rules Data mining Data structures Inference algorithms Itemsets Parallel algorithms Parallel processing Transaction databases Tree data structures |
title | Efficient data-structures and parallel algorithms for association rules discovery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A29%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Efficient%20data-structures%20and%20parallel%20algorithms%20for%20association%20rules%20discovery&rft.btitle=Proceedings%20of%20the%20Fifth%20Mexican%20International%20Conference%20in%20Computer%20Science,%202004.%20ENC%202004&rft.au=Cerin,%20C.&rft.date=2004&rft.spage=399&rft.epage=406&rft.pages=399-406&rft.isbn=0769521606&rft.isbn_list=9780769521602&rft_id=info:doi/10.1109/ENC.2004.1342634&rft_dat=%3Cieee_6IE%3E1342634%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1342634&rfr_iscdi=true |