Efficient data-structures and parallel algorithms for association rules discovery

Discovering patterns or frequent episodes in transactions is an important problem in data mining for the purpose of infering deductive rules from them. Because of the huge size of the data to deal with, parallel algorithms have been designed for reducing both the execution time and the number of rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cerin, C., Gay, J.-S., Le Mahec, G., Koskas, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 406
container_issue
container_start_page 399
container_title
container_volume
creator Cerin, C.
Gay, J.-S.
Le Mahec, G.
Koskas, M.
description Discovering patterns or frequent episodes in transactions is an important problem in data mining for the purpose of infering deductive rules from them. Because of the huge size of the data to deal with, parallel algorithms have been designed for reducing both the execution time and the number of repeated passes over the database in order to reduce, as much as possible, I/O overheads. In this paper, we introduce approaches for the implementation of two basic algorithms for association rules discovery (namely Apriori and Eclat). Our approaches combine efficient data structures to code different key information (line indexes, candidates) and we exhibit how to introduce parallelism for processing such data-structures.
doi_str_mv 10.1109/ENC.2004.1342634
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1342634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1342634</ieee_id><sourcerecordid>1342634</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a6a66f7a922bc81eeb9c169bf0c301895d83ec92dc9eabf6911545b7e052f1293</originalsourceid><addsrcrecordid>eNotj8FKxDAURQMiqOPsBTf5gda8tEmbpZSqA4Mi6Hp4TV80kmmHJBXm7x1w7uZsDgcuY3cgSgBhHvrXrpRC1CVUtdRVfcFuRKONkqCFvmLrlH7EabUC0Zpr9t47562nKfMRMxYpx8XmJVLiOI38gBFDoMAxfM3R5-994m6OHFOarcfs54nHJZzs0Sc7_1I83rJLhyHR-swV-3zqP7qXYvv2vOket4WHRuUCNWrtGjRSDrYFosFY0GZwwlYCWqPGtiJr5GgN4eC0AVC1GhoSSjqQplqx-_-uJ6LdIfo9xuPu_Lr6AyXYTs4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Efficient data-structures and parallel algorithms for association rules discovery</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cerin, C. ; Gay, J.-S. ; Le Mahec, G. ; Koskas, M.</creator><creatorcontrib>Cerin, C. ; Gay, J.-S. ; Le Mahec, G. ; Koskas, M.</creatorcontrib><description>Discovering patterns or frequent episodes in transactions is an important problem in data mining for the purpose of infering deductive rules from them. Because of the huge size of the data to deal with, parallel algorithms have been designed for reducing both the execution time and the number of repeated passes over the database in order to reduce, as much as possible, I/O overheads. In this paper, we introduce approaches for the implementation of two basic algorithms for association rules discovery (namely Apriori and Eclat). Our approaches combine efficient data structures to code different key information (line indexes, candidates) and we exhibit how to introduce parallelism for processing such data-structures.</description><identifier>ISBN: 0769521606</identifier><identifier>ISBN: 9780769521602</identifier><identifier>DOI: 10.1109/ENC.2004.1342634</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Association rules ; Data mining ; Data structures ; Inference algorithms ; Itemsets ; Parallel algorithms ; Parallel processing ; Transaction databases ; Tree data structures</subject><ispartof>Proceedings of the Fifth Mexican International Conference in Computer Science, 2004. ENC 2004, 2004, p.399-406</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1342634$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4040,4041,27916,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1342634$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cerin, C.</creatorcontrib><creatorcontrib>Gay, J.-S.</creatorcontrib><creatorcontrib>Le Mahec, G.</creatorcontrib><creatorcontrib>Koskas, M.</creatorcontrib><title>Efficient data-structures and parallel algorithms for association rules discovery</title><title>Proceedings of the Fifth Mexican International Conference in Computer Science, 2004. ENC 2004</title><addtitle>ENC</addtitle><description>Discovering patterns or frequent episodes in transactions is an important problem in data mining for the purpose of infering deductive rules from them. Because of the huge size of the data to deal with, parallel algorithms have been designed for reducing both the execution time and the number of repeated passes over the database in order to reduce, as much as possible, I/O overheads. In this paper, we introduce approaches for the implementation of two basic algorithms for association rules discovery (namely Apriori and Eclat). Our approaches combine efficient data structures to code different key information (line indexes, candidates) and we exhibit how to introduce parallelism for processing such data-structures.</description><subject>Algorithm design and analysis</subject><subject>Association rules</subject><subject>Data mining</subject><subject>Data structures</subject><subject>Inference algorithms</subject><subject>Itemsets</subject><subject>Parallel algorithms</subject><subject>Parallel processing</subject><subject>Transaction databases</subject><subject>Tree data structures</subject><isbn>0769521606</isbn><isbn>9780769521602</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8FKxDAURQMiqOPsBTf5gda8tEmbpZSqA4Mi6Hp4TV80kmmHJBXm7x1w7uZsDgcuY3cgSgBhHvrXrpRC1CVUtdRVfcFuRKONkqCFvmLrlH7EabUC0Zpr9t47562nKfMRMxYpx8XmJVLiOI38gBFDoMAxfM3R5-994m6OHFOarcfs54nHJZzs0Sc7_1I83rJLhyHR-swV-3zqP7qXYvv2vOket4WHRuUCNWrtGjRSDrYFosFY0GZwwlYCWqPGtiJr5GgN4eC0AVC1GhoSSjqQplqx-_-uJ6LdIfo9xuPu_Lr6AyXYTs4</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Cerin, C.</creator><creator>Gay, J.-S.</creator><creator>Le Mahec, G.</creator><creator>Koskas, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>Efficient data-structures and parallel algorithms for association rules discovery</title><author>Cerin, C. ; Gay, J.-S. ; Le Mahec, G. ; Koskas, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a6a66f7a922bc81eeb9c169bf0c301895d83ec92dc9eabf6911545b7e052f1293</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithm design and analysis</topic><topic>Association rules</topic><topic>Data mining</topic><topic>Data structures</topic><topic>Inference algorithms</topic><topic>Itemsets</topic><topic>Parallel algorithms</topic><topic>Parallel processing</topic><topic>Transaction databases</topic><topic>Tree data structures</topic><toplevel>online_resources</toplevel><creatorcontrib>Cerin, C.</creatorcontrib><creatorcontrib>Gay, J.-S.</creatorcontrib><creatorcontrib>Le Mahec, G.</creatorcontrib><creatorcontrib>Koskas, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cerin, C.</au><au>Gay, J.-S.</au><au>Le Mahec, G.</au><au>Koskas, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Efficient data-structures and parallel algorithms for association rules discovery</atitle><btitle>Proceedings of the Fifth Mexican International Conference in Computer Science, 2004. ENC 2004</btitle><stitle>ENC</stitle><date>2004</date><risdate>2004</risdate><spage>399</spage><epage>406</epage><pages>399-406</pages><isbn>0769521606</isbn><isbn>9780769521602</isbn><abstract>Discovering patterns or frequent episodes in transactions is an important problem in data mining for the purpose of infering deductive rules from them. Because of the huge size of the data to deal with, parallel algorithms have been designed for reducing both the execution time and the number of repeated passes over the database in order to reduce, as much as possible, I/O overheads. In this paper, we introduce approaches for the implementation of two basic algorithms for association rules discovery (namely Apriori and Eclat). Our approaches combine efficient data structures to code different key information (line indexes, candidates) and we exhibit how to introduce parallelism for processing such data-structures.</abstract><pub>IEEE</pub><doi>10.1109/ENC.2004.1342634</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769521606
ispartof Proceedings of the Fifth Mexican International Conference in Computer Science, 2004. ENC 2004, 2004, p.399-406
issn
language eng
recordid cdi_ieee_primary_1342634
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Association rules
Data mining
Data structures
Inference algorithms
Itemsets
Parallel algorithms
Parallel processing
Transaction databases
Tree data structures
title Efficient data-structures and parallel algorithms for association rules discovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A29%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Efficient%20data-structures%20and%20parallel%20algorithms%20for%20association%20rules%20discovery&rft.btitle=Proceedings%20of%20the%20Fifth%20Mexican%20International%20Conference%20in%20Computer%20Science,%202004.%20ENC%202004&rft.au=Cerin,%20C.&rft.date=2004&rft.spage=399&rft.epage=406&rft.pages=399-406&rft.isbn=0769521606&rft.isbn_list=9780769521602&rft_id=info:doi/10.1109/ENC.2004.1342634&rft_dat=%3Cieee_6IE%3E1342634%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1342634&rfr_iscdi=true