Image retrieval with relevance feedback based on graph-theoretic region correspondence estimation

This paper presents a graph-theoretic approach for region-based image retrieval. When dealing with image matching problem, we propose converting the region correspondence estimation into an attributed graph matching problem and measuring the image similarity in terms of both the region correspondenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chuech-Yu Li, Ming-Chou Shih, Chiou-Ting Hsu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 845 Vol.3
container_issue
container_start_page 842
container_title
container_volume 3
creator Chuech-Yu Li
Ming-Chou Shih
Chiou-Ting Hsu
description This paper presents a graph-theoretic approach for region-based image retrieval. When dealing with image matching problem, we propose converting the region correspondence estimation into an attributed graph matching problem and measuring the image similarity in terms of both the region correspondence and the low-level features. In addition, during the relevance feedback, we propose using a maximum likelihood method to re-estimate region features and region importance while retaining its inherent spatial organization. Experimental results show that the proposed graph-theoretic matching criterion outperforms other existing methods which include no spatial information in the matching criterion. The experiments also show that the performance can be further improved with our proposed relevance feedback scheme.
doi_str_mv 10.1109/ICPR.2004.1334659
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1334659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1334659</ieee_id><sourcerecordid>1334659</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-826bf0b2ec608a14f49a0cfb1d8d5ed285eb2479c53cb9d1e4de8fb4d53c3ef43</originalsourceid><addsrcrecordid>eNotkNtKxDAQhoMHsLv6AOJNXqA1k0ObXsriobCgiF4vOUza6O52SYvi2xtxr4Zv5j_AEHINrAJg7W23enmtOGOyAiFkrdoTUnAtoGxko07JgjV1qzhwzc9IAUxBmUVwQRbT9MEYZ0LpgphuZ3qkCecU8cts6Xech4zbDHuHNCB6a9wntWZCT8c97ZM5DOU84JhN0WVtH_PajSnhdBj3Hv98OM1xZ-Z8uSTnwWwnvDrOJXl_uH9bPZXr58dudbcuIzRqLjWvbWCWo6uZNiCDbA1zwYLXXqHnWqHlsmmdEs62HlB61MFKn1lgkGJJbv5zIyJuDinXp5_N8TXiFyNVWOs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Image retrieval with relevance feedback based on graph-theoretic region correspondence estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chuech-Yu Li ; Ming-Chou Shih ; Chiou-Ting Hsu</creator><creatorcontrib>Chuech-Yu Li ; Ming-Chou Shih ; Chiou-Ting Hsu</creatorcontrib><description>This paper presents a graph-theoretic approach for region-based image retrieval. When dealing with image matching problem, we propose converting the region correspondence estimation into an attributed graph matching problem and measuring the image similarity in terms of both the region correspondence and the low-level features. In addition, during the relevance feedback, we propose using a maximum likelihood method to re-estimate region features and region importance while retaining its inherent spatial organization. Experimental results show that the proposed graph-theoretic matching criterion outperforms other existing methods which include no spatial information in the matching criterion. The experiments also show that the performance can be further improved with our proposed relevance feedback scheme.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769521282</identifier><identifier>ISBN: 9780769521282</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2004.1334659</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Content based retrieval ; Feedback ; Image converters ; Image databases ; Image matching ; Image representation ; Image retrieval ; Information retrieval ; Maximum likelihood estimation</subject><ispartof>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, 2004, Vol.3, p.842-845 Vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1334659$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1334659$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chuech-Yu Li</creatorcontrib><creatorcontrib>Ming-Chou Shih</creatorcontrib><creatorcontrib>Chiou-Ting Hsu</creatorcontrib><title>Image retrieval with relevance feedback based on graph-theoretic region correspondence estimation</title><title>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004</title><addtitle>ICPR</addtitle><description>This paper presents a graph-theoretic approach for region-based image retrieval. When dealing with image matching problem, we propose converting the region correspondence estimation into an attributed graph matching problem and measuring the image similarity in terms of both the region correspondence and the low-level features. In addition, during the relevance feedback, we propose using a maximum likelihood method to re-estimate region features and region importance while retaining its inherent spatial organization. Experimental results show that the proposed graph-theoretic matching criterion outperforms other existing methods which include no spatial information in the matching criterion. The experiments also show that the performance can be further improved with our proposed relevance feedback scheme.</description><subject>Computer science</subject><subject>Content based retrieval</subject><subject>Feedback</subject><subject>Image converters</subject><subject>Image databases</subject><subject>Image matching</subject><subject>Image representation</subject><subject>Image retrieval</subject><subject>Information retrieval</subject><subject>Maximum likelihood estimation</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769521282</isbn><isbn>9780769521282</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkNtKxDAQhoMHsLv6AOJNXqA1k0ObXsriobCgiF4vOUza6O52SYvi2xtxr4Zv5j_AEHINrAJg7W23enmtOGOyAiFkrdoTUnAtoGxko07JgjV1qzhwzc9IAUxBmUVwQRbT9MEYZ0LpgphuZ3qkCecU8cts6Xech4zbDHuHNCB6a9wntWZCT8c97ZM5DOU84JhN0WVtH_PajSnhdBj3Hv98OM1xZ-Z8uSTnwWwnvDrOJXl_uH9bPZXr58dudbcuIzRqLjWvbWCWo6uZNiCDbA1zwYLXXqHnWqHlsmmdEs62HlB61MFKn1lgkGJJbv5zIyJuDinXp5_N8TXiFyNVWOs</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Chuech-Yu Li</creator><creator>Ming-Chou Shih</creator><creator>Chiou-Ting Hsu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>Image retrieval with relevance feedback based on graph-theoretic region correspondence estimation</title><author>Chuech-Yu Li ; Ming-Chou Shih ; Chiou-Ting Hsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-826bf0b2ec608a14f49a0cfb1d8d5ed285eb2479c53cb9d1e4de8fb4d53c3ef43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Computer science</topic><topic>Content based retrieval</topic><topic>Feedback</topic><topic>Image converters</topic><topic>Image databases</topic><topic>Image matching</topic><topic>Image representation</topic><topic>Image retrieval</topic><topic>Information retrieval</topic><topic>Maximum likelihood estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Chuech-Yu Li</creatorcontrib><creatorcontrib>Ming-Chou Shih</creatorcontrib><creatorcontrib>Chiou-Ting Hsu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chuech-Yu Li</au><au>Ming-Chou Shih</au><au>Chiou-Ting Hsu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Image retrieval with relevance feedback based on graph-theoretic region correspondence estimation</atitle><btitle>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004</btitle><stitle>ICPR</stitle><date>2004</date><risdate>2004</risdate><volume>3</volume><spage>842</spage><epage>845 Vol.3</epage><pages>842-845 Vol.3</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769521282</isbn><isbn>9780769521282</isbn><abstract>This paper presents a graph-theoretic approach for region-based image retrieval. When dealing with image matching problem, we propose converting the region correspondence estimation into an attributed graph matching problem and measuring the image similarity in terms of both the region correspondence and the low-level features. In addition, during the relevance feedback, we propose using a maximum likelihood method to re-estimate region features and region importance while retaining its inherent spatial organization. Experimental results show that the proposed graph-theoretic matching criterion outperforms other existing methods which include no spatial information in the matching criterion. The experiments also show that the performance can be further improved with our proposed relevance feedback scheme.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2004.1334659</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, 2004, Vol.3, p.842-845 Vol.3
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_1334659
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer science
Content based retrieval
Feedback
Image converters
Image databases
Image matching
Image representation
Image retrieval
Information retrieval
Maximum likelihood estimation
title Image retrieval with relevance feedback based on graph-theoretic region correspondence estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A34%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Image%20retrieval%20with%20relevance%20feedback%20based%20on%20graph-theoretic%20region%20correspondence%20estimation&rft.btitle=Proceedings%20of%20the%2017th%20International%20Conference%20on%20Pattern%20Recognition,%202004.%20ICPR%202004&rft.au=Chuech-Yu%20Li&rft.date=2004&rft.volume=3&rft.spage=842&rft.epage=845%20Vol.3&rft.pages=842-845%20Vol.3&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769521282&rft.isbn_list=9780769521282&rft_id=info:doi/10.1109/ICPR.2004.1334659&rft_dat=%3Cieee_6IE%3E1334659%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1334659&rfr_iscdi=true