1D-HMM for face verification: model optimization using improved algorithm and intelligent selection of training images

In this paper, we present an optimized version of 1D-HMM for real-time face verification. DCT coefficients of face images are used as observation vectors in HMM states. Three modifications have been proposed to improve the overall performance of the approach: (1) replacing Baum-Welch algorithm with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Naderi, S., Moin, M.S., Charkari, N.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 333 Vol.3
container_issue
container_start_page 330
container_title
container_volume 3
creator Naderi, S.
Moin, M.S.
Charkari, N.M.
description In this paper, we present an optimized version of 1D-HMM for real-time face verification. DCT coefficients of face images are used as observation vectors in HMM states. Three modifications have been proposed to improve the overall performance of the approach: (1) replacing Baum-Welch algorithm with a clustering algorithm, (2) adding a clustering performance measure to the clustering algorithm and (3) selecting an intelligent training set among available images in data set. Despite its lower computational complexity, this approach shows better verification performance compared with other 1D-HMM methods. The proposed algorithm has been successfully tested on the well-known ORL face data set, exhibiting an accuracy of 96%. This is more than 10% higher than the verification results of the classical 1D-HMMs and is comparable with the results obtained with the 2D-HMMs, which is much more complex than the 1D-HMM.
doi_str_mv 10.1109/ICPR.2004.1334534
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1334534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1334534</ieee_id><sourcerecordid>1334534</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8749898061a8ce248a33da1c71062d119060fd00ea71ca8c99143b8c6b8ccef03</originalsourceid><addsrcrecordid>eNotUNtKw0AUXLyAbfUDxJf9gdRz9pJsfJN6aaFFEX0u6-ZsXEmyJVkL-vWWtg_DwDAXGMauEaaIUN4uZq9vUwGgpiil0lKdsJEwErNCFfqUjaHISy1QGHHGRggaM5VrvGDjYfgGECC1GbEtPmTz1Yr72HNvHfEt9cEHZ1OI3R1vY0UNj5sU2vC31_jPELqah3bTxy1V3DZ17EP6arntKh66RE0TauoSH6ght49Ez1NvQ3cI2pqGS3bubTPQ1ZEn7OPp8X02z5Yvz4vZ_TILWOiUmUKVpjSQozWOhDJWysqiKxByUSGWkIOvAMgW6HaWskQlP43Ld3DkQU7YzaE3ENF60-_W-9_18S_5D6qYXoU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>1D-HMM for face verification: model optimization using improved algorithm and intelligent selection of training images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Naderi, S. ; Moin, M.S. ; Charkari, N.M.</creator><creatorcontrib>Naderi, S. ; Moin, M.S. ; Charkari, N.M.</creatorcontrib><description>In this paper, we present an optimized version of 1D-HMM for real-time face verification. DCT coefficients of face images are used as observation vectors in HMM states. Three modifications have been proposed to improve the overall performance of the approach: (1) replacing Baum-Welch algorithm with a clustering algorithm, (2) adding a clustering performance measure to the clustering algorithm and (3) selecting an intelligent training set among available images in data set. Despite its lower computational complexity, this approach shows better verification performance compared with other 1D-HMM methods. The proposed algorithm has been successfully tested on the well-known ORL face data set, exhibiting an accuracy of 96%. This is more than 10% higher than the verification results of the classical 1D-HMMs and is comparable with the results obtained with the 2D-HMMs, which is much more complex than the 1D-HMM.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769521282</identifier><identifier>ISBN: 9780769521282</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2004.1334534</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biometrics ; Clustering algorithms ; Discrete cosine transforms ; Face detection ; Face recognition ; Glass ; Hair ; Hidden Markov models ; Humans ; Testing</subject><ispartof>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, 2004, Vol.3, p.330-333 Vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1334534$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,4051,4052,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1334534$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Naderi, S.</creatorcontrib><creatorcontrib>Moin, M.S.</creatorcontrib><creatorcontrib>Charkari, N.M.</creatorcontrib><title>1D-HMM for face verification: model optimization using improved algorithm and intelligent selection of training images</title><title>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004</title><addtitle>ICPR</addtitle><description>In this paper, we present an optimized version of 1D-HMM for real-time face verification. DCT coefficients of face images are used as observation vectors in HMM states. Three modifications have been proposed to improve the overall performance of the approach: (1) replacing Baum-Welch algorithm with a clustering algorithm, (2) adding a clustering performance measure to the clustering algorithm and (3) selecting an intelligent training set among available images in data set. Despite its lower computational complexity, this approach shows better verification performance compared with other 1D-HMM methods. The proposed algorithm has been successfully tested on the well-known ORL face data set, exhibiting an accuracy of 96%. This is more than 10% higher than the verification results of the classical 1D-HMMs and is comparable with the results obtained with the 2D-HMMs, which is much more complex than the 1D-HMM.</description><subject>Biometrics</subject><subject>Clustering algorithms</subject><subject>Discrete cosine transforms</subject><subject>Face detection</subject><subject>Face recognition</subject><subject>Glass</subject><subject>Hair</subject><subject>Hidden Markov models</subject><subject>Humans</subject><subject>Testing</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769521282</isbn><isbn>9780769521282</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUNtKw0AUXLyAbfUDxJf9gdRz9pJsfJN6aaFFEX0u6-ZsXEmyJVkL-vWWtg_DwDAXGMauEaaIUN4uZq9vUwGgpiil0lKdsJEwErNCFfqUjaHISy1QGHHGRggaM5VrvGDjYfgGECC1GbEtPmTz1Yr72HNvHfEt9cEHZ1OI3R1vY0UNj5sU2vC31_jPELqah3bTxy1V3DZ17EP6arntKh66RE0TauoSH6ght49Ez1NvQ3cI2pqGS3bubTPQ1ZEn7OPp8X02z5Yvz4vZ_TILWOiUmUKVpjSQozWOhDJWysqiKxByUSGWkIOvAMgW6HaWskQlP43Ld3DkQU7YzaE3ENF60-_W-9_18S_5D6qYXoU</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Naderi, S.</creator><creator>Moin, M.S.</creator><creator>Charkari, N.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>1D-HMM for face verification: model optimization using improved algorithm and intelligent selection of training images</title><author>Naderi, S. ; Moin, M.S. ; Charkari, N.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8749898061a8ce248a33da1c71062d119060fd00ea71ca8c99143b8c6b8ccef03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Biometrics</topic><topic>Clustering algorithms</topic><topic>Discrete cosine transforms</topic><topic>Face detection</topic><topic>Face recognition</topic><topic>Glass</topic><topic>Hair</topic><topic>Hidden Markov models</topic><topic>Humans</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Naderi, S.</creatorcontrib><creatorcontrib>Moin, M.S.</creatorcontrib><creatorcontrib>Charkari, N.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Naderi, S.</au><au>Moin, M.S.</au><au>Charkari, N.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>1D-HMM for face verification: model optimization using improved algorithm and intelligent selection of training images</atitle><btitle>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004</btitle><stitle>ICPR</stitle><date>2004</date><risdate>2004</risdate><volume>3</volume><spage>330</spage><epage>333 Vol.3</epage><pages>330-333 Vol.3</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769521282</isbn><isbn>9780769521282</isbn><abstract>In this paper, we present an optimized version of 1D-HMM for real-time face verification. DCT coefficients of face images are used as observation vectors in HMM states. Three modifications have been proposed to improve the overall performance of the approach: (1) replacing Baum-Welch algorithm with a clustering algorithm, (2) adding a clustering performance measure to the clustering algorithm and (3) selecting an intelligent training set among available images in data set. Despite its lower computational complexity, this approach shows better verification performance compared with other 1D-HMM methods. The proposed algorithm has been successfully tested on the well-known ORL face data set, exhibiting an accuracy of 96%. This is more than 10% higher than the verification results of the classical 1D-HMMs and is comparable with the results obtained with the 2D-HMMs, which is much more complex than the 1D-HMM.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2004.1334534</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, 2004, Vol.3, p.330-333 Vol.3
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_1334534
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biometrics
Clustering algorithms
Discrete cosine transforms
Face detection
Face recognition
Glass
Hair
Hidden Markov models
Humans
Testing
title 1D-HMM for face verification: model optimization using improved algorithm and intelligent selection of training images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T19%3A36%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=1D-HMM%20for%20face%20verification:%20model%20optimization%20using%20improved%20algorithm%20and%20intelligent%20selection%20of%20training%20images&rft.btitle=Proceedings%20of%20the%2017th%20International%20Conference%20on%20Pattern%20Recognition,%202004.%20ICPR%202004&rft.au=Naderi,%20S.&rft.date=2004&rft.volume=3&rft.spage=330&rft.epage=333%20Vol.3&rft.pages=330-333%20Vol.3&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769521282&rft.isbn_list=9780769521282&rft_id=info:doi/10.1109/ICPR.2004.1334534&rft_dat=%3Cieee_6IE%3E1334534%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1334534&rfr_iscdi=true