Gaussian energy functions for registration without correspondences

A new criterion based on Gaussian fields is introduced and applied to the task of automatic rigid registration of point-sets. The method defines a simple energy function, which is always differentiable and convex in a large neighborhood of the alignment parameters; allowing for the use of powerful s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Boughorbel, F., Koschan, A., Abidi, B., Abidi, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27 Vol.3
container_issue
container_start_page 24
container_title
container_volume 3
creator Boughorbel, F.
Koschan, A.
Abidi, B.
Abidi, M.
description A new criterion based on Gaussian fields is introduced and applied to the task of automatic rigid registration of point-sets. The method defines a simple energy function, which is always differentiable and convex in a large neighborhood of the alignment parameters; allowing for the use of powerful standard optimization techniques. We show that the size of the region of convergence can be extended so that no close initialization is needed, thus overcoming local convergence problems of iterative closest point algorithms. Furthermore, the Gaussian energy function can be evaluated with the linear complexity using the fast Gauss transform, which permits efficient implementation of the registration algorithm. Analysis through several experimental results on real world datasets shows the practicality and points out the limits of the approach.
doi_str_mv 10.1109/ICPR.2004.1334460
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1334460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1334460</ieee_id><sourcerecordid>1334460</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-39e8f24814ddf0427eb08d40b50ba90f004521ca5f0e1888a7fda372bba985de3</originalsourceid><addsrcrecordid>eNotj11LwzAYhYMfYDf9AeJN_kDrm68mvdSiczBQRK9H2ryZEU1H0iL791bc1YFz4OE8hFwzqBiD5nbdvrxWHEBWTAgpazghBTeClVpqdUoWoOtGccYNPyMFA8VKWSt2QRY5fwJwEMoU5H5lp5yDjRQjpt2B-in2Yxhipn5INOEu5DHZv4b-hPFjmEbaDylh3g_RYewxX5Jzb78yXh1zSd4fH97ap3LzvFq3d5sycMnGUjRoPJeGSec8SK6xA-MkdAo624CfRea3vVUekBljrPbOCs27eTXKoViSm39uQMTtPoVvmw7bo7v4Ba-vTNE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Gaussian energy functions for registration without correspondences</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Boughorbel, F. ; Koschan, A. ; Abidi, B. ; Abidi, M.</creator><creatorcontrib>Boughorbel, F. ; Koschan, A. ; Abidi, B. ; Abidi, M.</creatorcontrib><description>A new criterion based on Gaussian fields is introduced and applied to the task of automatic rigid registration of point-sets. The method defines a simple energy function, which is always differentiable and convex in a large neighborhood of the alignment parameters; allowing for the use of powerful standard optimization techniques. We show that the size of the region of convergence can be extended so that no close initialization is needed, thus overcoming local convergence problems of iterative closest point algorithms. Furthermore, the Gaussian energy function can be evaluated with the linear complexity using the fast Gauss transform, which permits efficient implementation of the registration algorithm. Analysis through several experimental results on real world datasets shows the practicality and points out the limits of the approach.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769521282</identifier><identifier>ISBN: 9780769521282</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2004.1334460</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convergence ; Gaussian processes ; Intelligent robots ; Intelligent systems ; Iterative algorithms ; Iterative closest point algorithm ; Laboratories ; Robotics and automation ; Shape measurement ; Surface reconstruction</subject><ispartof>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, 2004, Vol.3, p.24-27 Vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1334460$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1334460$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Boughorbel, F.</creatorcontrib><creatorcontrib>Koschan, A.</creatorcontrib><creatorcontrib>Abidi, B.</creatorcontrib><creatorcontrib>Abidi, M.</creatorcontrib><title>Gaussian energy functions for registration without correspondences</title><title>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004</title><addtitle>ICPR</addtitle><description>A new criterion based on Gaussian fields is introduced and applied to the task of automatic rigid registration of point-sets. The method defines a simple energy function, which is always differentiable and convex in a large neighborhood of the alignment parameters; allowing for the use of powerful standard optimization techniques. We show that the size of the region of convergence can be extended so that no close initialization is needed, thus overcoming local convergence problems of iterative closest point algorithms. Furthermore, the Gaussian energy function can be evaluated with the linear complexity using the fast Gauss transform, which permits efficient implementation of the registration algorithm. Analysis through several experimental results on real world datasets shows the practicality and points out the limits of the approach.</description><subject>Convergence</subject><subject>Gaussian processes</subject><subject>Intelligent robots</subject><subject>Intelligent systems</subject><subject>Iterative algorithms</subject><subject>Iterative closest point algorithm</subject><subject>Laboratories</subject><subject>Robotics and automation</subject><subject>Shape measurement</subject><subject>Surface reconstruction</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769521282</isbn><isbn>9780769521282</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj11LwzAYhYMfYDf9AeJN_kDrm68mvdSiczBQRK9H2ryZEU1H0iL791bc1YFz4OE8hFwzqBiD5nbdvrxWHEBWTAgpazghBTeClVpqdUoWoOtGccYNPyMFA8VKWSt2QRY5fwJwEMoU5H5lp5yDjRQjpt2B-in2Yxhipn5INOEu5DHZv4b-hPFjmEbaDylh3g_RYewxX5Jzb78yXh1zSd4fH97ap3LzvFq3d5sycMnGUjRoPJeGSec8SK6xA-MkdAo624CfRea3vVUekBljrPbOCs27eTXKoViSm39uQMTtPoVvmw7bo7v4Ba-vTNE</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Boughorbel, F.</creator><creator>Koschan, A.</creator><creator>Abidi, B.</creator><creator>Abidi, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>Gaussian energy functions for registration without correspondences</title><author>Boughorbel, F. ; Koschan, A. ; Abidi, B. ; Abidi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-39e8f24814ddf0427eb08d40b50ba90f004521ca5f0e1888a7fda372bba985de3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Convergence</topic><topic>Gaussian processes</topic><topic>Intelligent robots</topic><topic>Intelligent systems</topic><topic>Iterative algorithms</topic><topic>Iterative closest point algorithm</topic><topic>Laboratories</topic><topic>Robotics and automation</topic><topic>Shape measurement</topic><topic>Surface reconstruction</topic><toplevel>online_resources</toplevel><creatorcontrib>Boughorbel, F.</creatorcontrib><creatorcontrib>Koschan, A.</creatorcontrib><creatorcontrib>Abidi, B.</creatorcontrib><creatorcontrib>Abidi, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boughorbel, F.</au><au>Koschan, A.</au><au>Abidi, B.</au><au>Abidi, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Gaussian energy functions for registration without correspondences</atitle><btitle>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004</btitle><stitle>ICPR</stitle><date>2004</date><risdate>2004</risdate><volume>3</volume><spage>24</spage><epage>27 Vol.3</epage><pages>24-27 Vol.3</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769521282</isbn><isbn>9780769521282</isbn><abstract>A new criterion based on Gaussian fields is introduced and applied to the task of automatic rigid registration of point-sets. The method defines a simple energy function, which is always differentiable and convex in a large neighborhood of the alignment parameters; allowing for the use of powerful standard optimization techniques. We show that the size of the region of convergence can be extended so that no close initialization is needed, thus overcoming local convergence problems of iterative closest point algorithms. Furthermore, the Gaussian energy function can be evaluated with the linear complexity using the fast Gauss transform, which permits efficient implementation of the registration algorithm. Analysis through several experimental results on real world datasets shows the practicality and points out the limits of the approach.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2004.1334460</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, 2004, Vol.3, p.24-27 Vol.3
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_1334460
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Convergence
Gaussian processes
Intelligent robots
Intelligent systems
Iterative algorithms
Iterative closest point algorithm
Laboratories
Robotics and automation
Shape measurement
Surface reconstruction
title Gaussian energy functions for registration without correspondences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Gaussian%20energy%20functions%20for%20registration%20without%20correspondences&rft.btitle=Proceedings%20of%20the%2017th%20International%20Conference%20on%20Pattern%20Recognition,%202004.%20ICPR%202004&rft.au=Boughorbel,%20F.&rft.date=2004&rft.volume=3&rft.spage=24&rft.epage=27%20Vol.3&rft.pages=24-27%20Vol.3&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769521282&rft.isbn_list=9780769521282&rft_id=info:doi/10.1109/ICPR.2004.1334460&rft_dat=%3Cieee_6IE%3E1334460%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1334460&rfr_iscdi=true