To FRAME or not to FRAME in probabilistic texture modelling?

The maximum entropy principle is a cornerstone of FRAME (filters, random fields, and maximum entropy) model considered at times as a first-ever step towards a universal theory of texture modelling or even as "the inevitable texture model". This paper disputes such opinions. That a wealth o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gimel'farb, G., Van Gool, L., Zalesny, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 711 Vol.2
container_issue
container_start_page 707
container_title
container_volume 2
creator Gimel'farb, G.
Van Gool, L.
Zalesny, A.
description The maximum entropy principle is a cornerstone of FRAME (filters, random fields, and maximum entropy) model considered at times as a first-ever step towards a universal theory of texture modelling or even as "the inevitable texture model". This paper disputes such opinions. That a wealth of exponential families of probability distributions is deduced from the ME principle is well known for decades. The ME properly by itself in no way leads to an adequate probabilistic description, and to model a particular texture, specific limitations have to be imposed on signal statistics. Frequency distributions of outputs from a bank of linear filters (the second FRAME'S cornerstone) are hardly the only choice outperforming all other alternatives. The paper points also to other hidden drawbacks of FRAME.
doi_str_mv 10.1109/ICPR.2004.1334357
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1334357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1334357</ieee_id><sourcerecordid>1334357</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-719edac6e4b476641b5c31ec91509c2f0a7892cae4872e207cbd9da61854aec93</originalsourceid><addsrcrecordid>eNo1j9tKw0AURQcvYFr9APFlfiDxnLlmQJASWi1UlFKfy2RyKiNpUpIR9O8rWJ82CxYLNmO3CAUiuPtl9bYuBIAqUEoltT1jmSgl5lZZfc4mYI3TAkUpLliGoDFXRuMVm4zjJ4AAqcuMPWx6vljPXua8H3jXJ57-OXb8MPS1r2MbxxQDT_Sdvgbi-76hto3dx-M1u9z5dqSb007Z-2K-qZ7z1evTspqt8ohWp9yio8YHQ6pW1hiFtQ4SKTjU4ILYgbelE8GTKq0gATbUjWu8wVIr_6vJKbv760Yi2h6GuPfDz_b0Wh4BxkdH5A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>To FRAME or not to FRAME in probabilistic texture modelling?</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gimel'farb, G. ; Van Gool, L. ; Zalesny, A.</creator><creatorcontrib>Gimel'farb, G. ; Van Gool, L. ; Zalesny, A.</creatorcontrib><description>The maximum entropy principle is a cornerstone of FRAME (filters, random fields, and maximum entropy) model considered at times as a first-ever step towards a universal theory of texture modelling or even as "the inevitable texture model". This paper disputes such opinions. That a wealth of exponential families of probability distributions is deduced from the ME principle is well known for decades. The ME properly by itself in no way leads to an adequate probabilistic description, and to model a particular texture, specific limitations have to be imposed on signal statistics. Frequency distributions of outputs from a bank of linear filters (the second FRAME'S cornerstone) are hardly the only choice outperforming all other alternatives. The paper points also to other hidden drawbacks of FRAME.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769521282</identifier><identifier>ISBN: 9780769521282</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2004.1334357</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Entropy ; Filter bank ; Filtering theory ; Frequency ; Nonlinear filters ; Probability distribution ; Solid modeling ; Statistical distributions ; Statistics</subject><ispartof>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, 2004, Vol.2, p.707-711 Vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1334357$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1334357$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gimel'farb, G.</creatorcontrib><creatorcontrib>Van Gool, L.</creatorcontrib><creatorcontrib>Zalesny, A.</creatorcontrib><title>To FRAME or not to FRAME in probabilistic texture modelling?</title><title>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004</title><addtitle>ICPR</addtitle><description>The maximum entropy principle is a cornerstone of FRAME (filters, random fields, and maximum entropy) model considered at times as a first-ever step towards a universal theory of texture modelling or even as "the inevitable texture model". This paper disputes such opinions. That a wealth of exponential families of probability distributions is deduced from the ME principle is well known for decades. The ME properly by itself in no way leads to an adequate probabilistic description, and to model a particular texture, specific limitations have to be imposed on signal statistics. Frequency distributions of outputs from a bank of linear filters (the second FRAME'S cornerstone) are hardly the only choice outperforming all other alternatives. The paper points also to other hidden drawbacks of FRAME.</description><subject>Computer science</subject><subject>Entropy</subject><subject>Filter bank</subject><subject>Filtering theory</subject><subject>Frequency</subject><subject>Nonlinear filters</subject><subject>Probability distribution</subject><subject>Solid modeling</subject><subject>Statistical distributions</subject><subject>Statistics</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769521282</isbn><isbn>9780769521282</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j9tKw0AURQcvYFr9APFlfiDxnLlmQJASWi1UlFKfy2RyKiNpUpIR9O8rWJ82CxYLNmO3CAUiuPtl9bYuBIAqUEoltT1jmSgl5lZZfc4mYI3TAkUpLliGoDFXRuMVm4zjJ4AAqcuMPWx6vljPXua8H3jXJ57-OXb8MPS1r2MbxxQDT_Sdvgbi-76hto3dx-M1u9z5dqSb007Z-2K-qZ7z1evTspqt8ohWp9yio8YHQ6pW1hiFtQ4SKTjU4ILYgbelE8GTKq0gATbUjWu8wVIr_6vJKbv760Yi2h6GuPfDz_b0Wh4BxkdH5A</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Gimel'farb, G.</creator><creator>Van Gool, L.</creator><creator>Zalesny, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>To FRAME or not to FRAME in probabilistic texture modelling?</title><author>Gimel'farb, G. ; Van Gool, L. ; Zalesny, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-719edac6e4b476641b5c31ec91509c2f0a7892cae4872e207cbd9da61854aec93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Computer science</topic><topic>Entropy</topic><topic>Filter bank</topic><topic>Filtering theory</topic><topic>Frequency</topic><topic>Nonlinear filters</topic><topic>Probability distribution</topic><topic>Solid modeling</topic><topic>Statistical distributions</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Gimel'farb, G.</creatorcontrib><creatorcontrib>Van Gool, L.</creatorcontrib><creatorcontrib>Zalesny, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gimel'farb, G.</au><au>Van Gool, L.</au><au>Zalesny, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>To FRAME or not to FRAME in probabilistic texture modelling?</atitle><btitle>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004</btitle><stitle>ICPR</stitle><date>2004</date><risdate>2004</risdate><volume>2</volume><spage>707</spage><epage>711 Vol.2</epage><pages>707-711 Vol.2</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769521282</isbn><isbn>9780769521282</isbn><abstract>The maximum entropy principle is a cornerstone of FRAME (filters, random fields, and maximum entropy) model considered at times as a first-ever step towards a universal theory of texture modelling or even as "the inevitable texture model". This paper disputes such opinions. That a wealth of exponential families of probability distributions is deduced from the ME principle is well known for decades. The ME properly by itself in no way leads to an adequate probabilistic description, and to model a particular texture, specific limitations have to be imposed on signal statistics. Frequency distributions of outputs from a bank of linear filters (the second FRAME'S cornerstone) are hardly the only choice outperforming all other alternatives. The paper points also to other hidden drawbacks of FRAME.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2004.1334357</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, 2004, Vol.2, p.707-711 Vol.2
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_1334357
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer science
Entropy
Filter bank
Filtering theory
Frequency
Nonlinear filters
Probability distribution
Solid modeling
Statistical distributions
Statistics
title To FRAME or not to FRAME in probabilistic texture modelling?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A51%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=To%20FRAME%20or%20not%20to%20FRAME%20in%20probabilistic%20texture%20modelling?&rft.btitle=Proceedings%20of%20the%2017th%20International%20Conference%20on%20Pattern%20Recognition,%202004.%20ICPR%202004&rft.au=Gimel'farb,%20G.&rft.date=2004&rft.volume=2&rft.spage=707&rft.epage=711%20Vol.2&rft.pages=707-711%20Vol.2&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769521282&rft.isbn_list=9780769521282&rft_id=info:doi/10.1109/ICPR.2004.1334357&rft_dat=%3Cieee_6IE%3E1334357%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1334357&rfr_iscdi=true