A fast recursive 3D model reconstruction algorithm for multimedia applications

A recursive two-step method to recover structure and motion from image sequences based on Kalman filtering is described in this paper. The algorithm consists of two major steps. The first step is an extended Kalman filter for the estimation of the object's pose. The second step is a set of exte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ying-Kin Yu, Kin-Hong Wong, Ming-Yuen Chang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 244 Vol.2
container_issue
container_start_page 241
container_title
container_volume 2
creator Ying-Kin Yu
Kin-Hong Wong
Ming-Yuen Chang
description A recursive two-step method to recover structure and motion from image sequences based on Kalman filtering is described in this paper. The algorithm consists of two major steps. The first step is an extended Kalman filter for the estimation of the object's pose. The second step is a set of extended Kalman filters, one for each model point, for refining the positions of the model features in the 3D space. The initial guess is a planar model formed under the assumption of orthographic projection on the first image. These two steps alternate from frames to frames. The planar model converges to the final structure as the image sequence is scanned sequentially. The performance of the algorithm is demonstrated with both synthetic data and real world objects. Comparisons with different approaches have been performed and show that our method is more efficient.
doi_str_mv 10.1109/ICPR.2004.1334143
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1334143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1334143</ieee_id><sourcerecordid>1334143</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-9cb035b7f1bc9b3dea46b1a512b9062d09d93545542b5f6965d24553e5bd5d663</originalsourceid><addsrcrecordid>eNotkNtKxDAYhIMHsLv6AOJNXqA1f5I_bS6XelpYVESvl6RJNdJuS9IKvr27uFfDDB8zMIRcAysAmL5d169vBWdMFiCEBClOSMYrAXkpSzwlC1YqjRx4xc9IBgwhlwrhgixS-maMM4FVRp5XtDVpotE3c0zhx1NxR_vB-e4QDbs0xbmZwrCjpvscYpi-etoOkfZzN4Xeu2CoGccuNOYApUty3pou-aujLsnHw_17_ZRvXh7X9WqTBw7VlOvG7udt2YJttBXOG6ksGARuNVPcMe20QIkoucVWaYWO753waB06pcSS3Pz3Bu_9doyhN_F3e_xB_AFSkk_p</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A fast recursive 3D model reconstruction algorithm for multimedia applications</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ying-Kin Yu ; Kin-Hong Wong ; Ming-Yuen Chang</creator><creatorcontrib>Ying-Kin Yu ; Kin-Hong Wong ; Ming-Yuen Chang</creatorcontrib><description>A recursive two-step method to recover structure and motion from image sequences based on Kalman filtering is described in this paper. The algorithm consists of two major steps. The first step is an extended Kalman filter for the estimation of the object's pose. The second step is a set of extended Kalman filters, one for each model point, for refining the positions of the model features in the 3D space. The initial guess is a planar model formed under the assumption of orthographic projection on the first image. These two steps alternate from frames to frames. The planar model converges to the final structure as the image sequence is scanned sequentially. The performance of the algorithm is demonstrated with both synthetic data and real world objects. Comparisons with different approaches have been performed and show that our method is more efficient.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769521282</identifier><identifier>ISBN: 9780769521282</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2004.1334143</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Computer science ; Computer vision ; Filtering ; Image converters ; Image reconstruction ; Image sequences ; Kalman filters ; Reconstruction algorithms ; Streaming media</subject><ispartof>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, 2004, Vol.2, p.241-244 Vol.2</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1334143$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1334143$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ying-Kin Yu</creatorcontrib><creatorcontrib>Kin-Hong Wong</creatorcontrib><creatorcontrib>Ming-Yuen Chang</creatorcontrib><title>A fast recursive 3D model reconstruction algorithm for multimedia applications</title><title>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004</title><addtitle>ICPR</addtitle><description>A recursive two-step method to recover structure and motion from image sequences based on Kalman filtering is described in this paper. The algorithm consists of two major steps. The first step is an extended Kalman filter for the estimation of the object's pose. The second step is a set of extended Kalman filters, one for each model point, for refining the positions of the model features in the 3D space. The initial guess is a planar model formed under the assumption of orthographic projection on the first image. These two steps alternate from frames to frames. The planar model converges to the final structure as the image sequence is scanned sequentially. The performance of the algorithm is demonstrated with both synthetic data and real world objects. Comparisons with different approaches have been performed and show that our method is more efficient.</description><subject>Application software</subject><subject>Computer science</subject><subject>Computer vision</subject><subject>Filtering</subject><subject>Image converters</subject><subject>Image reconstruction</subject><subject>Image sequences</subject><subject>Kalman filters</subject><subject>Reconstruction algorithms</subject><subject>Streaming media</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769521282</isbn><isbn>9780769521282</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkNtKxDAYhIMHsLv6AOJNXqA1f5I_bS6XelpYVESvl6RJNdJuS9IKvr27uFfDDB8zMIRcAysAmL5d169vBWdMFiCEBClOSMYrAXkpSzwlC1YqjRx4xc9IBgwhlwrhgixS-maMM4FVRp5XtDVpotE3c0zhx1NxR_vB-e4QDbs0xbmZwrCjpvscYpi-etoOkfZzN4Xeu2CoGccuNOYApUty3pou-aujLsnHw_17_ZRvXh7X9WqTBw7VlOvG7udt2YJttBXOG6ksGARuNVPcMe20QIkoucVWaYWO753waB06pcSS3Pz3Bu_9doyhN_F3e_xB_AFSkk_p</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Ying-Kin Yu</creator><creator>Kin-Hong Wong</creator><creator>Ming-Yuen Chang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>A fast recursive 3D model reconstruction algorithm for multimedia applications</title><author>Ying-Kin Yu ; Kin-Hong Wong ; Ming-Yuen Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-9cb035b7f1bc9b3dea46b1a512b9062d09d93545542b5f6965d24553e5bd5d663</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Application software</topic><topic>Computer science</topic><topic>Computer vision</topic><topic>Filtering</topic><topic>Image converters</topic><topic>Image reconstruction</topic><topic>Image sequences</topic><topic>Kalman filters</topic><topic>Reconstruction algorithms</topic><topic>Streaming media</topic><toplevel>online_resources</toplevel><creatorcontrib>Ying-Kin Yu</creatorcontrib><creatorcontrib>Kin-Hong Wong</creatorcontrib><creatorcontrib>Ming-Yuen Chang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ying-Kin Yu</au><au>Kin-Hong Wong</au><au>Ming-Yuen Chang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A fast recursive 3D model reconstruction algorithm for multimedia applications</atitle><btitle>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004</btitle><stitle>ICPR</stitle><date>2004</date><risdate>2004</risdate><volume>2</volume><spage>241</spage><epage>244 Vol.2</epage><pages>241-244 Vol.2</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769521282</isbn><isbn>9780769521282</isbn><abstract>A recursive two-step method to recover structure and motion from image sequences based on Kalman filtering is described in this paper. The algorithm consists of two major steps. The first step is an extended Kalman filter for the estimation of the object's pose. The second step is a set of extended Kalman filters, one for each model point, for refining the positions of the model features in the 3D space. The initial guess is a planar model formed under the assumption of orthographic projection on the first image. These two steps alternate from frames to frames. The planar model converges to the final structure as the image sequence is scanned sequentially. The performance of the algorithm is demonstrated with both synthetic data and real world objects. Comparisons with different approaches have been performed and show that our method is more efficient.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2004.1334143</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, 2004, Vol.2, p.241-244 Vol.2
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_1334143
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Computer science
Computer vision
Filtering
Image converters
Image reconstruction
Image sequences
Kalman filters
Reconstruction algorithms
Streaming media
title A fast recursive 3D model reconstruction algorithm for multimedia applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T21%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20fast%20recursive%203D%20model%20reconstruction%20algorithm%20for%20multimedia%20applications&rft.btitle=Proceedings%20of%20the%2017th%20International%20Conference%20on%20Pattern%20Recognition,%202004.%20ICPR%202004&rft.au=Ying-Kin%20Yu&rft.date=2004&rft.volume=2&rft.spage=241&rft.epage=244%20Vol.2&rft.pages=241-244%20Vol.2&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769521282&rft.isbn_list=9780769521282&rft_id=info:doi/10.1109/ICPR.2004.1334143&rft_dat=%3Cieee_6IE%3E1334143%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1334143&rfr_iscdi=true