A fast recursive 3D model reconstruction algorithm for multimedia applications
A recursive two-step method to recover structure and motion from image sequences based on Kalman filtering is described in this paper. The algorithm consists of two major steps. The first step is an extended Kalman filter for the estimation of the object's pose. The second step is a set of exte...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 244 Vol.2 |
---|---|
container_issue | |
container_start_page | 241 |
container_title | |
container_volume | 2 |
creator | Ying-Kin Yu Kin-Hong Wong Ming-Yuen Chang |
description | A recursive two-step method to recover structure and motion from image sequences based on Kalman filtering is described in this paper. The algorithm consists of two major steps. The first step is an extended Kalman filter for the estimation of the object's pose. The second step is a set of extended Kalman filters, one for each model point, for refining the positions of the model features in the 3D space. The initial guess is a planar model formed under the assumption of orthographic projection on the first image. These two steps alternate from frames to frames. The planar model converges to the final structure as the image sequence is scanned sequentially. The performance of the algorithm is demonstrated with both synthetic data and real world objects. Comparisons with different approaches have been performed and show that our method is more efficient. |
doi_str_mv | 10.1109/ICPR.2004.1334143 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1334143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1334143</ieee_id><sourcerecordid>1334143</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-9cb035b7f1bc9b3dea46b1a512b9062d09d93545542b5f6965d24553e5bd5d663</originalsourceid><addsrcrecordid>eNotkNtKxDAYhIMHsLv6AOJNXqA1f5I_bS6XelpYVESvl6RJNdJuS9IKvr27uFfDDB8zMIRcAysAmL5d169vBWdMFiCEBClOSMYrAXkpSzwlC1YqjRx4xc9IBgwhlwrhgixS-maMM4FVRp5XtDVpotE3c0zhx1NxR_vB-e4QDbs0xbmZwrCjpvscYpi-etoOkfZzN4Xeu2CoGccuNOYApUty3pou-aujLsnHw_17_ZRvXh7X9WqTBw7VlOvG7udt2YJttBXOG6ksGARuNVPcMe20QIkoucVWaYWO753waB06pcSS3Pz3Bu_9doyhN_F3e_xB_AFSkk_p</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A fast recursive 3D model reconstruction algorithm for multimedia applications</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ying-Kin Yu ; Kin-Hong Wong ; Ming-Yuen Chang</creator><creatorcontrib>Ying-Kin Yu ; Kin-Hong Wong ; Ming-Yuen Chang</creatorcontrib><description>A recursive two-step method to recover structure and motion from image sequences based on Kalman filtering is described in this paper. The algorithm consists of two major steps. The first step is an extended Kalman filter for the estimation of the object's pose. The second step is a set of extended Kalman filters, one for each model point, for refining the positions of the model features in the 3D space. The initial guess is a planar model formed under the assumption of orthographic projection on the first image. These two steps alternate from frames to frames. The planar model converges to the final structure as the image sequence is scanned sequentially. The performance of the algorithm is demonstrated with both synthetic data and real world objects. Comparisons with different approaches have been performed and show that our method is more efficient.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769521282</identifier><identifier>ISBN: 9780769521282</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2004.1334143</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Computer science ; Computer vision ; Filtering ; Image converters ; Image reconstruction ; Image sequences ; Kalman filters ; Reconstruction algorithms ; Streaming media</subject><ispartof>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, 2004, Vol.2, p.241-244 Vol.2</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1334143$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1334143$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ying-Kin Yu</creatorcontrib><creatorcontrib>Kin-Hong Wong</creatorcontrib><creatorcontrib>Ming-Yuen Chang</creatorcontrib><title>A fast recursive 3D model reconstruction algorithm for multimedia applications</title><title>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004</title><addtitle>ICPR</addtitle><description>A recursive two-step method to recover structure and motion from image sequences based on Kalman filtering is described in this paper. The algorithm consists of two major steps. The first step is an extended Kalman filter for the estimation of the object's pose. The second step is a set of extended Kalman filters, one for each model point, for refining the positions of the model features in the 3D space. The initial guess is a planar model formed under the assumption of orthographic projection on the first image. These two steps alternate from frames to frames. The planar model converges to the final structure as the image sequence is scanned sequentially. The performance of the algorithm is demonstrated with both synthetic data and real world objects. Comparisons with different approaches have been performed and show that our method is more efficient.</description><subject>Application software</subject><subject>Computer science</subject><subject>Computer vision</subject><subject>Filtering</subject><subject>Image converters</subject><subject>Image reconstruction</subject><subject>Image sequences</subject><subject>Kalman filters</subject><subject>Reconstruction algorithms</subject><subject>Streaming media</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769521282</isbn><isbn>9780769521282</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkNtKxDAYhIMHsLv6AOJNXqA1f5I_bS6XelpYVESvl6RJNdJuS9IKvr27uFfDDB8zMIRcAysAmL5d169vBWdMFiCEBClOSMYrAXkpSzwlC1YqjRx4xc9IBgwhlwrhgixS-maMM4FVRp5XtDVpotE3c0zhx1NxR_vB-e4QDbs0xbmZwrCjpvscYpi-etoOkfZzN4Xeu2CoGccuNOYApUty3pou-aujLsnHw_17_ZRvXh7X9WqTBw7VlOvG7udt2YJttBXOG6ksGARuNVPcMe20QIkoucVWaYWO753waB06pcSS3Pz3Bu_9doyhN_F3e_xB_AFSkk_p</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Ying-Kin Yu</creator><creator>Kin-Hong Wong</creator><creator>Ming-Yuen Chang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>A fast recursive 3D model reconstruction algorithm for multimedia applications</title><author>Ying-Kin Yu ; Kin-Hong Wong ; Ming-Yuen Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-9cb035b7f1bc9b3dea46b1a512b9062d09d93545542b5f6965d24553e5bd5d663</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Application software</topic><topic>Computer science</topic><topic>Computer vision</topic><topic>Filtering</topic><topic>Image converters</topic><topic>Image reconstruction</topic><topic>Image sequences</topic><topic>Kalman filters</topic><topic>Reconstruction algorithms</topic><topic>Streaming media</topic><toplevel>online_resources</toplevel><creatorcontrib>Ying-Kin Yu</creatorcontrib><creatorcontrib>Kin-Hong Wong</creatorcontrib><creatorcontrib>Ming-Yuen Chang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ying-Kin Yu</au><au>Kin-Hong Wong</au><au>Ming-Yuen Chang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A fast recursive 3D model reconstruction algorithm for multimedia applications</atitle><btitle>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004</btitle><stitle>ICPR</stitle><date>2004</date><risdate>2004</risdate><volume>2</volume><spage>241</spage><epage>244 Vol.2</epage><pages>241-244 Vol.2</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769521282</isbn><isbn>9780769521282</isbn><abstract>A recursive two-step method to recover structure and motion from image sequences based on Kalman filtering is described in this paper. The algorithm consists of two major steps. The first step is an extended Kalman filter for the estimation of the object's pose. The second step is a set of extended Kalman filters, one for each model point, for refining the positions of the model features in the 3D space. The initial guess is a planar model formed under the assumption of orthographic projection on the first image. These two steps alternate from frames to frames. The planar model converges to the final structure as the image sequence is scanned sequentially. The performance of the algorithm is demonstrated with both synthetic data and real world objects. Comparisons with different approaches have been performed and show that our method is more efficient.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2004.1334143</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, 2004, Vol.2, p.241-244 Vol.2 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_1334143 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Application software Computer science Computer vision Filtering Image converters Image reconstruction Image sequences Kalman filters Reconstruction algorithms Streaming media |
title | A fast recursive 3D model reconstruction algorithm for multimedia applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T21%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20fast%20recursive%203D%20model%20reconstruction%20algorithm%20for%20multimedia%20applications&rft.btitle=Proceedings%20of%20the%2017th%20International%20Conference%20on%20Pattern%20Recognition,%202004.%20ICPR%202004&rft.au=Ying-Kin%20Yu&rft.date=2004&rft.volume=2&rft.spage=241&rft.epage=244%20Vol.2&rft.pages=241-244%20Vol.2&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769521282&rft.isbn_list=9780769521282&rft_id=info:doi/10.1109/ICPR.2004.1334143&rft_dat=%3Cieee_6IE%3E1334143%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1334143&rfr_iscdi=true |