Designing an efficient resistive magnet for magnetic resonance imaging
We present an alternative procedure to design a 0.1 T resistive magnet for magnetic resonance imaging. The procedure considers the conductor to be uniformly located over the cylindrical surface and treats it as coil elements. It applies the linear programming method with upper and lower bounds to co...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2004-09, Vol.40 (5), p.3378-3381 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3381 |
---|---|
container_issue | 5 |
container_start_page | 3378 |
container_title | IEEE transactions on magnetics |
container_volume | 40 |
creator | Lopez, H.S. Salmon, C.G. Mirabal, C.C. Saint-Jalmes, H. |
description | We present an alternative procedure to design a 0.1 T resistive magnet for magnetic resonance imaging. The procedure considers the conductor to be uniformly located over the cylindrical surface and treats it as coil elements. It applies the linear programming method with upper and lower bounds to constrain the current density to a fixed value in order to produce a desired magnetic field over a region of interest. The approach minimizes the power and preserves the predefined homogeneity, resulting in spatial clusters that define the coil's magnet. We demonstrate the method in a practical design situation. |
doi_str_mv | 10.1109/TMAG.2004.833176 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1333149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1333149</ieee_id><sourcerecordid>2427995511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-9034a5fb13da7eb668ea90b19dd6d6e15fd8e1d0364b2209509c31c80808ead43</originalsourceid><addsrcrecordid>eNp9kUFLAzEQhYMoWKt3wcsiKF62zmzSNDlKtVWoeKnnJc3OlpQ2W5Ot4L83SwsFDzKHZGa-eWHyGLtGGCCCfpy_P00HBYAYKM5xJE9YD7XAHEDqU9YDQJVrIcU5u4hxlVIxROixyTNFt_TOLzPjM6prZx35NgupHFv3TdnGLD21Wd2Ew9XZrtt44y1lLtXS8CU7q8060tXh7LPPyct8_JrPPqZv46dZbrkq2lwDF2ZYL5BXZkQLKRUZDQvUVSUrSTisK0VYAZdiURSgh6AtR6sgBZlK8D673-tuQ_O1o9iWGxctrdfGU7OLZaEKmdaXCXz4F0TgmAIEJvT2D7pqdsGnNUqlBAJA0T0Me8iGJsZAdbkNaffwk5TKzoCyM6DsDCj3BqSRu4Ouidas65A-zMXjnERUhdKJu9lzjoiObZ5UhOa_Y2-M9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884100024</pqid></control><display><type>article</type><title>Designing an efficient resistive magnet for magnetic resonance imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Lopez, H.S. ; Salmon, C.G. ; Mirabal, C.C. ; Saint-Jalmes, H.</creator><creatorcontrib>Lopez, H.S. ; Salmon, C.G. ; Mirabal, C.C. ; Saint-Jalmes, H.</creatorcontrib><description>We present an alternative procedure to design a 0.1 T resistive magnet for magnetic resonance imaging. The procedure considers the conductor to be uniformly located over the cylindrical surface and treats it as coil elements. It applies the linear programming method with upper and lower bounds to constrain the current density to a fixed value in order to produce a desired magnetic field over a region of interest. The approach minimizes the power and preserves the predefined homogeneity, resulting in spatial clusters that define the coil's magnet. We demonstrate the method in a practical design situation.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2004.833176</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Clusters ; Coiling ; Coils ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Conductors ; Conductors (devices) ; Current density ; Design methodology ; Design optimization ; Exact sciences and technology ; Homogeneity ; Linear programming ; Lower bounds ; Magnetic fields ; Magnetic properties and materials ; Magnetic resonance imaging ; Magnetism ; Physics ; Preserves ; Stability ; Surface treatment</subject><ispartof>IEEE transactions on magnetics, 2004-09, Vol.40 (5), p.3378-3381</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-9034a5fb13da7eb668ea90b19dd6d6e15fd8e1d0364b2209509c31c80808ead43</citedby><cites>FETCH-LOGICAL-c382t-9034a5fb13da7eb668ea90b19dd6d6e15fd8e1d0364b2209509c31c80808ead43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1333149$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1333149$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16118289$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopez, H.S.</creatorcontrib><creatorcontrib>Salmon, C.G.</creatorcontrib><creatorcontrib>Mirabal, C.C.</creatorcontrib><creatorcontrib>Saint-Jalmes, H.</creatorcontrib><title>Designing an efficient resistive magnet for magnetic resonance imaging</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>We present an alternative procedure to design a 0.1 T resistive magnet for magnetic resonance imaging. The procedure considers the conductor to be uniformly located over the cylindrical surface and treats it as coil elements. It applies the linear programming method with upper and lower bounds to constrain the current density to a fixed value in order to produce a desired magnetic field over a region of interest. The approach minimizes the power and preserves the predefined homogeneity, resulting in spatial clusters that define the coil's magnet. We demonstrate the method in a practical design situation.</description><subject>Clusters</subject><subject>Coiling</subject><subject>Coils</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Conductors</subject><subject>Conductors (devices)</subject><subject>Current density</subject><subject>Design methodology</subject><subject>Design optimization</subject><subject>Exact sciences and technology</subject><subject>Homogeneity</subject><subject>Linear programming</subject><subject>Lower bounds</subject><subject>Magnetic fields</subject><subject>Magnetic properties and materials</subject><subject>Magnetic resonance imaging</subject><subject>Magnetism</subject><subject>Physics</subject><subject>Preserves</subject><subject>Stability</subject><subject>Surface treatment</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUFLAzEQhYMoWKt3wcsiKF62zmzSNDlKtVWoeKnnJc3OlpQ2W5Ot4L83SwsFDzKHZGa-eWHyGLtGGCCCfpy_P00HBYAYKM5xJE9YD7XAHEDqU9YDQJVrIcU5u4hxlVIxROixyTNFt_TOLzPjM6prZx35NgupHFv3TdnGLD21Wd2Ew9XZrtt44y1lLtXS8CU7q8060tXh7LPPyct8_JrPPqZv46dZbrkq2lwDF2ZYL5BXZkQLKRUZDQvUVSUrSTisK0VYAZdiURSgh6AtR6sgBZlK8D673-tuQ_O1o9iWGxctrdfGU7OLZaEKmdaXCXz4F0TgmAIEJvT2D7pqdsGnNUqlBAJA0T0Me8iGJsZAdbkNaffwk5TKzoCyM6DsDCj3BqSRu4Ouidas65A-zMXjnERUhdKJu9lzjoiObZ5UhOa_Y2-M9Q</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Lopez, H.S.</creator><creator>Salmon, C.G.</creator><creator>Mirabal, C.C.</creator><creator>Saint-Jalmes, H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040901</creationdate><title>Designing an efficient resistive magnet for magnetic resonance imaging</title><author>Lopez, H.S. ; Salmon, C.G. ; Mirabal, C.C. ; Saint-Jalmes, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-9034a5fb13da7eb668ea90b19dd6d6e15fd8e1d0364b2209509c31c80808ead43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Clusters</topic><topic>Coiling</topic><topic>Coils</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Conductors</topic><topic>Conductors (devices)</topic><topic>Current density</topic><topic>Design methodology</topic><topic>Design optimization</topic><topic>Exact sciences and technology</topic><topic>Homogeneity</topic><topic>Linear programming</topic><topic>Lower bounds</topic><topic>Magnetic fields</topic><topic>Magnetic properties and materials</topic><topic>Magnetic resonance imaging</topic><topic>Magnetism</topic><topic>Physics</topic><topic>Preserves</topic><topic>Stability</topic><topic>Surface treatment</topic><toplevel>online_resources</toplevel><creatorcontrib>Lopez, H.S.</creatorcontrib><creatorcontrib>Salmon, C.G.</creatorcontrib><creatorcontrib>Mirabal, C.C.</creatorcontrib><creatorcontrib>Saint-Jalmes, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lopez, H.S.</au><au>Salmon, C.G.</au><au>Mirabal, C.C.</au><au>Saint-Jalmes, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing an efficient resistive magnet for magnetic resonance imaging</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2004-09-01</date><risdate>2004</risdate><volume>40</volume><issue>5</issue><spage>3378</spage><epage>3381</epage><pages>3378-3381</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>We present an alternative procedure to design a 0.1 T resistive magnet for magnetic resonance imaging. The procedure considers the conductor to be uniformly located over the cylindrical surface and treats it as coil elements. It applies the linear programming method with upper and lower bounds to constrain the current density to a fixed value in order to produce a desired magnetic field over a region of interest. The approach minimizes the power and preserves the predefined homogeneity, resulting in spatial clusters that define the coil's magnet. We demonstrate the method in a practical design situation.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2004.833176</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2004-09, Vol.40 (5), p.3378-3381 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_ieee_primary_1333149 |
source | IEEE Electronic Library (IEL) |
subjects | Clusters Coiling Coils Condensed matter: electronic structure, electrical, magnetic, and optical properties Conductors Conductors (devices) Current density Design methodology Design optimization Exact sciences and technology Homogeneity Linear programming Lower bounds Magnetic fields Magnetic properties and materials Magnetic resonance imaging Magnetism Physics Preserves Stability Surface treatment |
title | Designing an efficient resistive magnet for magnetic resonance imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A03%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20an%20efficient%20resistive%20magnet%20for%20magnetic%20resonance%20imaging&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Lopez,%20H.S.&rft.date=2004-09-01&rft.volume=40&rft.issue=5&rft.spage=3378&rft.epage=3381&rft.pages=3378-3381&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2004.833176&rft_dat=%3Cproquest_RIE%3E2427995511%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884100024&rft_id=info:pmid/&rft_ieee_id=1333149&rfr_iscdi=true |