Designing an efficient resistive magnet for magnetic resonance imaging

We present an alternative procedure to design a 0.1 T resistive magnet for magnetic resonance imaging. The procedure considers the conductor to be uniformly located over the cylindrical surface and treats it as coil elements. It applies the linear programming method with upper and lower bounds to co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2004-09, Vol.40 (5), p.3378-3381
Hauptverfasser: Lopez, H.S., Salmon, C.G., Mirabal, C.C., Saint-Jalmes, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3381
container_issue 5
container_start_page 3378
container_title IEEE transactions on magnetics
container_volume 40
creator Lopez, H.S.
Salmon, C.G.
Mirabal, C.C.
Saint-Jalmes, H.
description We present an alternative procedure to design a 0.1 T resistive magnet for magnetic resonance imaging. The procedure considers the conductor to be uniformly located over the cylindrical surface and treats it as coil elements. It applies the linear programming method with upper and lower bounds to constrain the current density to a fixed value in order to produce a desired magnetic field over a region of interest. The approach minimizes the power and preserves the predefined homogeneity, resulting in spatial clusters that define the coil's magnet. We demonstrate the method in a practical design situation.
doi_str_mv 10.1109/TMAG.2004.833176
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1333149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1333149</ieee_id><sourcerecordid>2427995511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-9034a5fb13da7eb668ea90b19dd6d6e15fd8e1d0364b2209509c31c80808ead43</originalsourceid><addsrcrecordid>eNp9kUFLAzEQhYMoWKt3wcsiKF62zmzSNDlKtVWoeKnnJc3OlpQ2W5Ot4L83SwsFDzKHZGa-eWHyGLtGGCCCfpy_P00HBYAYKM5xJE9YD7XAHEDqU9YDQJVrIcU5u4hxlVIxROixyTNFt_TOLzPjM6prZx35NgupHFv3TdnGLD21Wd2Ew9XZrtt44y1lLtXS8CU7q8060tXh7LPPyct8_JrPPqZv46dZbrkq2lwDF2ZYL5BXZkQLKRUZDQvUVSUrSTisK0VYAZdiURSgh6AtR6sgBZlK8D673-tuQ_O1o9iWGxctrdfGU7OLZaEKmdaXCXz4F0TgmAIEJvT2D7pqdsGnNUqlBAJA0T0Me8iGJsZAdbkNaffwk5TKzoCyM6DsDCj3BqSRu4Ouidas65A-zMXjnERUhdKJu9lzjoiObZ5UhOa_Y2-M9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884100024</pqid></control><display><type>article</type><title>Designing an efficient resistive magnet for magnetic resonance imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Lopez, H.S. ; Salmon, C.G. ; Mirabal, C.C. ; Saint-Jalmes, H.</creator><creatorcontrib>Lopez, H.S. ; Salmon, C.G. ; Mirabal, C.C. ; Saint-Jalmes, H.</creatorcontrib><description>We present an alternative procedure to design a 0.1 T resistive magnet for magnetic resonance imaging. The procedure considers the conductor to be uniformly located over the cylindrical surface and treats it as coil elements. It applies the linear programming method with upper and lower bounds to constrain the current density to a fixed value in order to produce a desired magnetic field over a region of interest. The approach minimizes the power and preserves the predefined homogeneity, resulting in spatial clusters that define the coil's magnet. We demonstrate the method in a practical design situation.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2004.833176</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Clusters ; Coiling ; Coils ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Conductors ; Conductors (devices) ; Current density ; Design methodology ; Design optimization ; Exact sciences and technology ; Homogeneity ; Linear programming ; Lower bounds ; Magnetic fields ; Magnetic properties and materials ; Magnetic resonance imaging ; Magnetism ; Physics ; Preserves ; Stability ; Surface treatment</subject><ispartof>IEEE transactions on magnetics, 2004-09, Vol.40 (5), p.3378-3381</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-9034a5fb13da7eb668ea90b19dd6d6e15fd8e1d0364b2209509c31c80808ead43</citedby><cites>FETCH-LOGICAL-c382t-9034a5fb13da7eb668ea90b19dd6d6e15fd8e1d0364b2209509c31c80808ead43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1333149$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1333149$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16118289$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopez, H.S.</creatorcontrib><creatorcontrib>Salmon, C.G.</creatorcontrib><creatorcontrib>Mirabal, C.C.</creatorcontrib><creatorcontrib>Saint-Jalmes, H.</creatorcontrib><title>Designing an efficient resistive magnet for magnetic resonance imaging</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>We present an alternative procedure to design a 0.1 T resistive magnet for magnetic resonance imaging. The procedure considers the conductor to be uniformly located over the cylindrical surface and treats it as coil elements. It applies the linear programming method with upper and lower bounds to constrain the current density to a fixed value in order to produce a desired magnetic field over a region of interest. The approach minimizes the power and preserves the predefined homogeneity, resulting in spatial clusters that define the coil's magnet. We demonstrate the method in a practical design situation.</description><subject>Clusters</subject><subject>Coiling</subject><subject>Coils</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Conductors</subject><subject>Conductors (devices)</subject><subject>Current density</subject><subject>Design methodology</subject><subject>Design optimization</subject><subject>Exact sciences and technology</subject><subject>Homogeneity</subject><subject>Linear programming</subject><subject>Lower bounds</subject><subject>Magnetic fields</subject><subject>Magnetic properties and materials</subject><subject>Magnetic resonance imaging</subject><subject>Magnetism</subject><subject>Physics</subject><subject>Preserves</subject><subject>Stability</subject><subject>Surface treatment</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUFLAzEQhYMoWKt3wcsiKF62zmzSNDlKtVWoeKnnJc3OlpQ2W5Ot4L83SwsFDzKHZGa-eWHyGLtGGCCCfpy_P00HBYAYKM5xJE9YD7XAHEDqU9YDQJVrIcU5u4hxlVIxROixyTNFt_TOLzPjM6prZx35NgupHFv3TdnGLD21Wd2Ew9XZrtt44y1lLtXS8CU7q8060tXh7LPPyct8_JrPPqZv46dZbrkq2lwDF2ZYL5BXZkQLKRUZDQvUVSUrSTisK0VYAZdiURSgh6AtR6sgBZlK8D673-tuQ_O1o9iWGxctrdfGU7OLZaEKmdaXCXz4F0TgmAIEJvT2D7pqdsGnNUqlBAJA0T0Me8iGJsZAdbkNaffwk5TKzoCyM6DsDCj3BqSRu4Ouidas65A-zMXjnERUhdKJu9lzjoiObZ5UhOa_Y2-M9Q</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Lopez, H.S.</creator><creator>Salmon, C.G.</creator><creator>Mirabal, C.C.</creator><creator>Saint-Jalmes, H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040901</creationdate><title>Designing an efficient resistive magnet for magnetic resonance imaging</title><author>Lopez, H.S. ; Salmon, C.G. ; Mirabal, C.C. ; Saint-Jalmes, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-9034a5fb13da7eb668ea90b19dd6d6e15fd8e1d0364b2209509c31c80808ead43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Clusters</topic><topic>Coiling</topic><topic>Coils</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Conductors</topic><topic>Conductors (devices)</topic><topic>Current density</topic><topic>Design methodology</topic><topic>Design optimization</topic><topic>Exact sciences and technology</topic><topic>Homogeneity</topic><topic>Linear programming</topic><topic>Lower bounds</topic><topic>Magnetic fields</topic><topic>Magnetic properties and materials</topic><topic>Magnetic resonance imaging</topic><topic>Magnetism</topic><topic>Physics</topic><topic>Preserves</topic><topic>Stability</topic><topic>Surface treatment</topic><toplevel>online_resources</toplevel><creatorcontrib>Lopez, H.S.</creatorcontrib><creatorcontrib>Salmon, C.G.</creatorcontrib><creatorcontrib>Mirabal, C.C.</creatorcontrib><creatorcontrib>Saint-Jalmes, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lopez, H.S.</au><au>Salmon, C.G.</au><au>Mirabal, C.C.</au><au>Saint-Jalmes, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing an efficient resistive magnet for magnetic resonance imaging</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2004-09-01</date><risdate>2004</risdate><volume>40</volume><issue>5</issue><spage>3378</spage><epage>3381</epage><pages>3378-3381</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>We present an alternative procedure to design a 0.1 T resistive magnet for magnetic resonance imaging. The procedure considers the conductor to be uniformly located over the cylindrical surface and treats it as coil elements. It applies the linear programming method with upper and lower bounds to constrain the current density to a fixed value in order to produce a desired magnetic field over a region of interest. The approach minimizes the power and preserves the predefined homogeneity, resulting in spatial clusters that define the coil's magnet. We demonstrate the method in a practical design situation.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2004.833176</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2004-09, Vol.40 (5), p.3378-3381
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_1333149
source IEEE Electronic Library (IEL)
subjects Clusters
Coiling
Coils
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Conductors
Conductors (devices)
Current density
Design methodology
Design optimization
Exact sciences and technology
Homogeneity
Linear programming
Lower bounds
Magnetic fields
Magnetic properties and materials
Magnetic resonance imaging
Magnetism
Physics
Preserves
Stability
Surface treatment
title Designing an efficient resistive magnet for magnetic resonance imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A03%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20an%20efficient%20resistive%20magnet%20for%20magnetic%20resonance%20imaging&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Lopez,%20H.S.&rft.date=2004-09-01&rft.volume=40&rft.issue=5&rft.spage=3378&rft.epage=3381&rft.pages=3378-3381&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2004.833176&rft_dat=%3Cproquest_RIE%3E2427995511%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884100024&rft_id=info:pmid/&rft_ieee_id=1333149&rfr_iscdi=true