Estimation of mixture densities from histograms [signal classification]

Many signals and statistical distributions are a mixture of component signals or distributions. Current methods for estimating the proportion of each component assume a parametric form for the components. We introduce nonparametric methods, based on projections onto convex sets, to address the many...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rouse, D.M., Trussell, H.J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 549
container_issue
container_start_page ii
container_title
container_volume 2
creator Rouse, D.M.
Trussell, H.J.
description Many signals and statistical distributions are a mixture of component signals or distributions. Current methods for estimating the proportion of each component assume a parametric form for the components. We introduce nonparametric methods, based on projections onto convex sets, to address the many practical cases where parametric models are not applicable. Comparisons are made with parametric methods and discussed for special cases where both methods can be used.
doi_str_mv 10.1109/ICASSP.2004.1326316
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_1326316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1326316</ieee_id><sourcerecordid>17566238</sourcerecordid><originalsourceid>FETCH-LOGICAL-i508-79b3558abf49c80dccf9ad561618016b86308362a4b3b6d24830b479fc6b26043</originalsourceid><addsrcrecordid>eNpFUMtKAzEUDT7AWvsF3WTjcsabx2SSpZRahYJCuxBESpJJamQeZe4I-vcdrCAcOIvz4N5DyJxBzhiYu6fF_WbzknMAmTPBlWDqjEy4KE3GDLyek5kpNYwQWmrJL8iEFRwyxaS5IteInwCgS6knZLXEITV2SF1Lu0ib9D189YFWocU0pIA09l1DPxIO3b63DdI3TPvW1tTXFjHF5H-z7zfkMtoaw-yPp2T7sNwuHrP182q8dp2lAnRWGieKQlsXpfEaKu-jsVWhmGIamHJaCdBCcSudcKriUgtwsjTRK8cVSDElt6fag0Vv69jb1ifcHfrxh_5nx8pCKS706JuffCmE8C-fphJHvk9bNg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Estimation of mixture densities from histograms [signal classification]</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rouse, D.M. ; Trussell, H.J.</creator><creatorcontrib>Rouse, D.M. ; Trussell, H.J.</creatorcontrib><description>Many signals and statistical distributions are a mixture of component signals or distributions. Current methods for estimating the proportion of each component assume a parametric form for the components. We introduce nonparametric methods, based on projections onto convex sets, to address the many practical cases where parametric models are not applicable. Comparisons are made with parametric methods and discussed for special cases where both methods can be used.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9780780384842</identifier><identifier>ISBN: 0780384849</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.2004.1326316</identifier><language>eng</language><publisher>Piscataway, N.J: IEEE</publisher><subject>Applied sciences ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Histograms ; Information, signal and communications theory ; Least squares approximation ; Maximum likelihood estimation ; Parametric statistics ; Pixel ; Quality of service ; Remote sensing ; Signal and communications theory ; Signal, noise ; Spatial resolution ; Statistical distributions ; Telecommunication traffic ; Telecommunications and information theory</subject><ispartof>2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004, Vol.2, p.ii-549</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1326316$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1326316$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17566238$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rouse, D.M.</creatorcontrib><creatorcontrib>Trussell, H.J.</creatorcontrib><title>Estimation of mixture densities from histograms [signal classification]</title><title>2004 IEEE International Conference on Acoustics, Speech, and Signal Processing</title><addtitle>ICASSP</addtitle><description>Many signals and statistical distributions are a mixture of component signals or distributions. Current methods for estimating the proportion of each component assume a parametric form for the components. We introduce nonparametric methods, based on projections onto convex sets, to address the many practical cases where parametric models are not applicable. Comparisons are made with parametric methods and discussed for special cases where both methods can be used.</description><subject>Applied sciences</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Histograms</subject><subject>Information, signal and communications theory</subject><subject>Least squares approximation</subject><subject>Maximum likelihood estimation</subject><subject>Parametric statistics</subject><subject>Pixel</subject><subject>Quality of service</subject><subject>Remote sensing</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Spatial resolution</subject><subject>Statistical distributions</subject><subject>Telecommunication traffic</subject><subject>Telecommunications and information theory</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9780780384842</isbn><isbn>0780384849</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUMtKAzEUDT7AWvsF3WTjcsabx2SSpZRahYJCuxBESpJJamQeZe4I-vcdrCAcOIvz4N5DyJxBzhiYu6fF_WbzknMAmTPBlWDqjEy4KE3GDLyek5kpNYwQWmrJL8iEFRwyxaS5IteInwCgS6knZLXEITV2SF1Lu0ib9D189YFWocU0pIA09l1DPxIO3b63DdI3TPvW1tTXFjHF5H-z7zfkMtoaw-yPp2T7sNwuHrP182q8dp2lAnRWGieKQlsXpfEaKu-jsVWhmGIamHJaCdBCcSudcKriUgtwsjTRK8cVSDElt6fag0Vv69jb1ifcHfrxh_5nx8pCKS706JuffCmE8C-fphJHvk9bNg</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Rouse, D.M.</creator><creator>Trussell, H.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Estimation of mixture densities from histograms [signal classification]</title><author>Rouse, D.M. ; Trussell, H.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i508-79b3558abf49c80dccf9ad561618016b86308362a4b3b6d24830b479fc6b26043</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Histograms</topic><topic>Information, signal and communications theory</topic><topic>Least squares approximation</topic><topic>Maximum likelihood estimation</topic><topic>Parametric statistics</topic><topic>Pixel</topic><topic>Quality of service</topic><topic>Remote sensing</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Spatial resolution</topic><topic>Statistical distributions</topic><topic>Telecommunication traffic</topic><topic>Telecommunications and information theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Rouse, D.M.</creatorcontrib><creatorcontrib>Trussell, H.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rouse, D.M.</au><au>Trussell, H.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Estimation of mixture densities from histograms [signal classification]</atitle><btitle>2004 IEEE International Conference on Acoustics, Speech, and Signal Processing</btitle><stitle>ICASSP</stitle><date>2004</date><risdate>2004</risdate><volume>2</volume><spage>ii</spage><epage>549</epage><pages>ii-549</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9780780384842</isbn><isbn>0780384849</isbn><abstract>Many signals and statistical distributions are a mixture of component signals or distributions. Current methods for estimating the proportion of each component assume a parametric form for the components. We introduce nonparametric methods, based on projections onto convex sets, to address the many practical cases where parametric models are not applicable. Comparisons are made with parametric methods and discussed for special cases where both methods can be used.</abstract><cop>Piscataway, N.J</cop><pub>IEEE</pub><doi>10.1109/ICASSP.2004.1326316</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004, Vol.2, p.ii-549
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_1326316
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied sciences
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Histograms
Information, signal and communications theory
Least squares approximation
Maximum likelihood estimation
Parametric statistics
Pixel
Quality of service
Remote sensing
Signal and communications theory
Signal, noise
Spatial resolution
Statistical distributions
Telecommunication traffic
Telecommunications and information theory
title Estimation of mixture densities from histograms [signal classification]
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Estimation%20of%20mixture%20densities%20from%20histograms%20%5Bsignal%20classification%5D&rft.btitle=2004%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing&rft.au=Rouse,%20D.M.&rft.date=2004&rft.volume=2&rft.spage=ii&rft.epage=549&rft.pages=ii-549&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9780780384842&rft.isbn_list=0780384849&rft_id=info:doi/10.1109/ICASSP.2004.1326316&rft_dat=%3Cpascalfrancis_6IE%3E17566238%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1326316&rfr_iscdi=true