The strength of replacement in weak arithmetic
The replacement (or collection or choice,) axiom scheme BB(/spl Gamma/) asserts bounded quantifier exchange as follows: /spl forall/I < |a| /spl exist/x < ao(i, x) /spl rarr/ /spl exist/w /spl forall/i < |a| o (i, [w]/sub i/) where o is in the class /spl Gamma/ of formulas. The theory S/sub...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 264 |
---|---|
container_issue | |
container_start_page | 256 |
container_title | |
container_volume | |
creator | Cook, S. Thapen, N. |
description | The replacement (or collection or choice,) axiom scheme BB(/spl Gamma/) asserts bounded quantifier exchange as follows: /spl forall/I < |a| /spl exist/x < ao(i, x) /spl rarr/ /spl exist/w /spl forall/i < |a| o (i, [w]/sub i/) where o is in the class /spl Gamma/ of formulas. The theory S/sub 2//sup 1/ proves the scheme BB(/spl Sigma//sub 1//sup b/), and thus in S/sub 2//sup 1/ every /spl Sigma//sub 1//sup b/ formula is equivalent to a strict /spl Sigma//sub 1//sup b/ formula (in which all non-sharply-bounded quantifiers are in front). Here we prove (sometimes subject to an assumption) that certain theories weaker than S/sub 2//sup 1/ do not prove either BB(/spl Sigma//sub 1//sup b/) or BB(/spl Sigma//sub 0//sup b/). We show (unconditionally) that V/sup 0/ does not prove BB(/spl Sigma//sub 1//sup B/), where V/sup 0/ (essentially I/spl Sigma//sub 0//sup 1,b/) is the two-sorted theory associated with the complexity class AC/sup 0/. We show that PV does not prove BB(/spl Sigma//sub 0//sup b/), assuming that integer factoring is not possible in probabilistic polynomial time. Johannsen and Pollet introduced the theory C/sub 2//sup 0/ associated with the complexity class TC/sup 0/, and later introduced an apparently weaker theory /spl Delta//sub 1//sup b/ - CR for the same class. We use our methods to show that /spl Delta//sub 1//sup b/ - CR is indeed weaker than C/sub 2//sup 0/, assuming that RSA is secure against probabilistic polynomial time attack. Our main tool is the KPT witnessing theorem. |
doi_str_mv | 10.1109/LICS.2004.1319620 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_1319620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1319620</ieee_id><sourcerecordid>17344552</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-be1a7d54ffcf6280ca8e19a8dd44999abad5f0d5d4535b457ac473edb31659e83</originalsourceid><addsrcrecordid>eNpFkEtLxDAUhYMPsI7zA8RNNy5bb15NspTBx0DBheN6uE1ubLRTS1sQ_70DFVydxfn44BzGrjmUnIO7q7eb11IAqJJL7ioBJywT2uhCa2FP2doZC6ZyWnAn5BnLOChZVNbwC3Y5TR8AICoFGSt3LeXTPFL_Prf5V8xHGjr0dKB-zlOffxN-5jimuT3QnPwVO4_YTbT-yxV7e3zYbZ6L-uVpu7mviyRAzkVDHE3QKkYfK2HBoyXu0IaglHMOGww6QtBBaakbpQ16ZSSFRvJKO7JyxW4X74CTxy6O2Ps07YcxHXD82XMjlTouPXI3C5eI6L9eLpG_Ey5SCQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The strength of replacement in weak arithmetic</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cook, S. ; Thapen, N.</creator><creatorcontrib>Cook, S. ; Thapen, N.</creatorcontrib><description>The replacement (or collection or choice,) axiom scheme BB(/spl Gamma/) asserts bounded quantifier exchange as follows: /spl forall/I < |a| /spl exist/x < ao(i, x) /spl rarr/ /spl exist/w /spl forall/i < |a| o (i, [w]/sub i/) where o is in the class /spl Gamma/ of formulas. The theory S/sub 2//sup 1/ proves the scheme BB(/spl Sigma//sub 1//sup b/), and thus in S/sub 2//sup 1/ every /spl Sigma//sub 1//sup b/ formula is equivalent to a strict /spl Sigma//sub 1//sup b/ formula (in which all non-sharply-bounded quantifiers are in front). Here we prove (sometimes subject to an assumption) that certain theories weaker than S/sub 2//sup 1/ do not prove either BB(/spl Sigma//sub 1//sup b/) or BB(/spl Sigma//sub 0//sup b/). We show (unconditionally) that V/sup 0/ does not prove BB(/spl Sigma//sub 1//sup B/), where V/sup 0/ (essentially I/spl Sigma//sub 0//sup 1,b/) is the two-sorted theory associated with the complexity class AC/sup 0/. We show that PV does not prove BB(/spl Sigma//sub 0//sup b/), assuming that integer factoring is not possible in probabilistic polynomial time. Johannsen and Pollet introduced the theory C/sub 2//sup 0/ associated with the complexity class TC/sup 0/, and later introduced an apparently weaker theory /spl Delta//sub 1//sup b/ - CR for the same class. We use our methods to show that /spl Delta//sub 1//sup b/ - CR is indeed weaker than C/sub 2//sup 0/, assuming that RSA is secure against probabilistic polynomial time attack. Our main tool is the KPT witnessing theorem.</description><identifier>ISSN: 1043-6871</identifier><identifier>ISBN: 9780769521923</identifier><identifier>ISBN: 0769521924</identifier><identifier>EISSN: 2575-5528</identifier><identifier>DOI: 10.1109/LICS.2004.1319620</identifier><language>eng</language><publisher>Los Alamitos, Calif: IEEE</publisher><subject>Applied sciences ; Arithmetic ; Computer science ; Computer science; control theory; systems ; Exact sciences and technology ; Gold ; Logical, boolean and switching functions ; Polynomials ; Theoretical computing</subject><ispartof>Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004, 2004, p.256-264</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1319620$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4047,4048,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1319620$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17344552$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cook, S.</creatorcontrib><creatorcontrib>Thapen, N.</creatorcontrib><title>The strength of replacement in weak arithmetic</title><title>Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004</title><addtitle>LICS</addtitle><description>The replacement (or collection or choice,) axiom scheme BB(/spl Gamma/) asserts bounded quantifier exchange as follows: /spl forall/I < |a| /spl exist/x < ao(i, x) /spl rarr/ /spl exist/w /spl forall/i < |a| o (i, [w]/sub i/) where o is in the class /spl Gamma/ of formulas. The theory S/sub 2//sup 1/ proves the scheme BB(/spl Sigma//sub 1//sup b/), and thus in S/sub 2//sup 1/ every /spl Sigma//sub 1//sup b/ formula is equivalent to a strict /spl Sigma//sub 1//sup b/ formula (in which all non-sharply-bounded quantifiers are in front). Here we prove (sometimes subject to an assumption) that certain theories weaker than S/sub 2//sup 1/ do not prove either BB(/spl Sigma//sub 1//sup b/) or BB(/spl Sigma//sub 0//sup b/). We show (unconditionally) that V/sup 0/ does not prove BB(/spl Sigma//sub 1//sup B/), where V/sup 0/ (essentially I/spl Sigma//sub 0//sup 1,b/) is the two-sorted theory associated with the complexity class AC/sup 0/. We show that PV does not prove BB(/spl Sigma//sub 0//sup b/), assuming that integer factoring is not possible in probabilistic polynomial time. Johannsen and Pollet introduced the theory C/sub 2//sup 0/ associated with the complexity class TC/sup 0/, and later introduced an apparently weaker theory /spl Delta//sub 1//sup b/ - CR for the same class. We use our methods to show that /spl Delta//sub 1//sup b/ - CR is indeed weaker than C/sub 2//sup 0/, assuming that RSA is secure against probabilistic polynomial time attack. Our main tool is the KPT witnessing theorem.</description><subject>Applied sciences</subject><subject>Arithmetic</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Gold</subject><subject>Logical, boolean and switching functions</subject><subject>Polynomials</subject><subject>Theoretical computing</subject><issn>1043-6871</issn><issn>2575-5528</issn><isbn>9780769521923</isbn><isbn>0769521924</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkEtLxDAUhYMPsI7zA8RNNy5bb15NspTBx0DBheN6uE1ubLRTS1sQ_70DFVydxfn44BzGrjmUnIO7q7eb11IAqJJL7ioBJywT2uhCa2FP2doZC6ZyWnAn5BnLOChZVNbwC3Y5TR8AICoFGSt3LeXTPFL_Prf5V8xHGjr0dKB-zlOffxN-5jimuT3QnPwVO4_YTbT-yxV7e3zYbZ6L-uVpu7mviyRAzkVDHE3QKkYfK2HBoyXu0IaglHMOGww6QtBBaakbpQ16ZSSFRvJKO7JyxW4X74CTxy6O2Ps07YcxHXD82XMjlTouPXI3C5eI6L9eLpG_Ey5SCQ</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Cook, S.</creator><creator>Thapen, N.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>The strength of replacement in weak arithmetic</title><author>Cook, S. ; Thapen, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-be1a7d54ffcf6280ca8e19a8dd44999abad5f0d5d4535b457ac473edb31659e83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Arithmetic</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Gold</topic><topic>Logical, boolean and switching functions</topic><topic>Polynomials</topic><topic>Theoretical computing</topic><toplevel>online_resources</toplevel><creatorcontrib>Cook, S.</creatorcontrib><creatorcontrib>Thapen, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cook, S.</au><au>Thapen, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The strength of replacement in weak arithmetic</atitle><btitle>Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004</btitle><stitle>LICS</stitle><date>2004</date><risdate>2004</risdate><spage>256</spage><epage>264</epage><pages>256-264</pages><issn>1043-6871</issn><eissn>2575-5528</eissn><isbn>9780769521923</isbn><isbn>0769521924</isbn><abstract>The replacement (or collection or choice,) axiom scheme BB(/spl Gamma/) asserts bounded quantifier exchange as follows: /spl forall/I < |a| /spl exist/x < ao(i, x) /spl rarr/ /spl exist/w /spl forall/i < |a| o (i, [w]/sub i/) where o is in the class /spl Gamma/ of formulas. The theory S/sub 2//sup 1/ proves the scheme BB(/spl Sigma//sub 1//sup b/), and thus in S/sub 2//sup 1/ every /spl Sigma//sub 1//sup b/ formula is equivalent to a strict /spl Sigma//sub 1//sup b/ formula (in which all non-sharply-bounded quantifiers are in front). Here we prove (sometimes subject to an assumption) that certain theories weaker than S/sub 2//sup 1/ do not prove either BB(/spl Sigma//sub 1//sup b/) or BB(/spl Sigma//sub 0//sup b/). We show (unconditionally) that V/sup 0/ does not prove BB(/spl Sigma//sub 1//sup B/), where V/sup 0/ (essentially I/spl Sigma//sub 0//sup 1,b/) is the two-sorted theory associated with the complexity class AC/sup 0/. We show that PV does not prove BB(/spl Sigma//sub 0//sup b/), assuming that integer factoring is not possible in probabilistic polynomial time. Johannsen and Pollet introduced the theory C/sub 2//sup 0/ associated with the complexity class TC/sup 0/, and later introduced an apparently weaker theory /spl Delta//sub 1//sup b/ - CR for the same class. We use our methods to show that /spl Delta//sub 1//sup b/ - CR is indeed weaker than C/sub 2//sup 0/, assuming that RSA is secure against probabilistic polynomial time attack. Our main tool is the KPT witnessing theorem.</abstract><cop>Los Alamitos, Calif</cop><pub>IEEE</pub><doi>10.1109/LICS.2004.1319620</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1043-6871 |
ispartof | Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004, 2004, p.256-264 |
issn | 1043-6871 2575-5528 |
language | eng |
recordid | cdi_ieee_primary_1319620 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Applied sciences Arithmetic Computer science Computer science control theory systems Exact sciences and technology Gold Logical, boolean and switching functions Polynomials Theoretical computing |
title | The strength of replacement in weak arithmetic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20strength%20of%20replacement%20in%20weak%20arithmetic&rft.btitle=Proceedings%20of%20the%2019th%20Annual%20IEEE%20Symposium%20on%20Logic%20in%20Computer%20Science,%202004&rft.au=Cook,%20S.&rft.date=2004&rft.spage=256&rft.epage=264&rft.pages=256-264&rft.issn=1043-6871&rft.eissn=2575-5528&rft.isbn=9780769521923&rft.isbn_list=0769521924&rft_id=info:doi/10.1109/LICS.2004.1319620&rft_dat=%3Cpascalfrancis_6IE%3E17344552%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1319620&rfr_iscdi=true |