The strength of replacement in weak arithmetic

The replacement (or collection or choice,) axiom scheme BB(/spl Gamma/) asserts bounded quantifier exchange as follows: /spl forall/I < |a| /spl exist/x < ao(i, x) /spl rarr/ /spl exist/w /spl forall/i < |a| o (i, [w]/sub i/) where o is in the class /spl Gamma/ of formulas. The theory S/sub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cook, S., Thapen, N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue
container_start_page 256
container_title
container_volume
creator Cook, S.
Thapen, N.
description The replacement (or collection or choice,) axiom scheme BB(/spl Gamma/) asserts bounded quantifier exchange as follows: /spl forall/I < |a| /spl exist/x < ao(i, x) /spl rarr/ /spl exist/w /spl forall/i < |a| o (i, [w]/sub i/) where o is in the class /spl Gamma/ of formulas. The theory S/sub 2//sup 1/ proves the scheme BB(/spl Sigma//sub 1//sup b/), and thus in S/sub 2//sup 1/ every /spl Sigma//sub 1//sup b/ formula is equivalent to a strict /spl Sigma//sub 1//sup b/ formula (in which all non-sharply-bounded quantifiers are in front). Here we prove (sometimes subject to an assumption) that certain theories weaker than S/sub 2//sup 1/ do not prove either BB(/spl Sigma//sub 1//sup b/) or BB(/spl Sigma//sub 0//sup b/). We show (unconditionally) that V/sup 0/ does not prove BB(/spl Sigma//sub 1//sup B/), where V/sup 0/ (essentially I/spl Sigma//sub 0//sup 1,b/) is the two-sorted theory associated with the complexity class AC/sup 0/. We show that PV does not prove BB(/spl Sigma//sub 0//sup b/), assuming that integer factoring is not possible in probabilistic polynomial time. Johannsen and Pollet introduced the theory C/sub 2//sup 0/ associated with the complexity class TC/sup 0/, and later introduced an apparently weaker theory /spl Delta//sub 1//sup b/ - CR for the same class. We use our methods to show that /spl Delta//sub 1//sup b/ - CR is indeed weaker than C/sub 2//sup 0/, assuming that RSA is secure against probabilistic polynomial time attack. Our main tool is the KPT witnessing theorem.
doi_str_mv 10.1109/LICS.2004.1319620
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_1319620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1319620</ieee_id><sourcerecordid>17344552</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-be1a7d54ffcf6280ca8e19a8dd44999abad5f0d5d4535b457ac473edb31659e83</originalsourceid><addsrcrecordid>eNpFkEtLxDAUhYMPsI7zA8RNNy5bb15NspTBx0DBheN6uE1ubLRTS1sQ_70DFVydxfn44BzGrjmUnIO7q7eb11IAqJJL7ioBJywT2uhCa2FP2doZC6ZyWnAn5BnLOChZVNbwC3Y5TR8AICoFGSt3LeXTPFL_Prf5V8xHGjr0dKB-zlOffxN-5jimuT3QnPwVO4_YTbT-yxV7e3zYbZ6L-uVpu7mviyRAzkVDHE3QKkYfK2HBoyXu0IaglHMOGww6QtBBaakbpQ16ZSSFRvJKO7JyxW4X74CTxy6O2Ps07YcxHXD82XMjlTouPXI3C5eI6L9eLpG_Ey5SCQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The strength of replacement in weak arithmetic</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cook, S. ; Thapen, N.</creator><creatorcontrib>Cook, S. ; Thapen, N.</creatorcontrib><description>The replacement (or collection or choice,) axiom scheme BB(/spl Gamma/) asserts bounded quantifier exchange as follows: /spl forall/I &lt; |a| /spl exist/x &lt; ao(i, x) /spl rarr/ /spl exist/w /spl forall/i &lt; |a| o (i, [w]/sub i/) where o is in the class /spl Gamma/ of formulas. The theory S/sub 2//sup 1/ proves the scheme BB(/spl Sigma//sub 1//sup b/), and thus in S/sub 2//sup 1/ every /spl Sigma//sub 1//sup b/ formula is equivalent to a strict /spl Sigma//sub 1//sup b/ formula (in which all non-sharply-bounded quantifiers are in front). Here we prove (sometimes subject to an assumption) that certain theories weaker than S/sub 2//sup 1/ do not prove either BB(/spl Sigma//sub 1//sup b/) or BB(/spl Sigma//sub 0//sup b/). We show (unconditionally) that V/sup 0/ does not prove BB(/spl Sigma//sub 1//sup B/), where V/sup 0/ (essentially I/spl Sigma//sub 0//sup 1,b/) is the two-sorted theory associated with the complexity class AC/sup 0/. We show that PV does not prove BB(/spl Sigma//sub 0//sup b/), assuming that integer factoring is not possible in probabilistic polynomial time. Johannsen and Pollet introduced the theory C/sub 2//sup 0/ associated with the complexity class TC/sup 0/, and later introduced an apparently weaker theory /spl Delta//sub 1//sup b/ - CR for the same class. We use our methods to show that /spl Delta//sub 1//sup b/ - CR is indeed weaker than C/sub 2//sup 0/, assuming that RSA is secure against probabilistic polynomial time attack. Our main tool is the KPT witnessing theorem.</description><identifier>ISSN: 1043-6871</identifier><identifier>ISBN: 9780769521923</identifier><identifier>ISBN: 0769521924</identifier><identifier>EISSN: 2575-5528</identifier><identifier>DOI: 10.1109/LICS.2004.1319620</identifier><language>eng</language><publisher>Los Alamitos, Calif: IEEE</publisher><subject>Applied sciences ; Arithmetic ; Computer science ; Computer science; control theory; systems ; Exact sciences and technology ; Gold ; Logical, boolean and switching functions ; Polynomials ; Theoretical computing</subject><ispartof>Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004, 2004, p.256-264</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1319620$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4047,4048,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1319620$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17344552$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cook, S.</creatorcontrib><creatorcontrib>Thapen, N.</creatorcontrib><title>The strength of replacement in weak arithmetic</title><title>Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004</title><addtitle>LICS</addtitle><description>The replacement (or collection or choice,) axiom scheme BB(/spl Gamma/) asserts bounded quantifier exchange as follows: /spl forall/I &lt; |a| /spl exist/x &lt; ao(i, x) /spl rarr/ /spl exist/w /spl forall/i &lt; |a| o (i, [w]/sub i/) where o is in the class /spl Gamma/ of formulas. The theory S/sub 2//sup 1/ proves the scheme BB(/spl Sigma//sub 1//sup b/), and thus in S/sub 2//sup 1/ every /spl Sigma//sub 1//sup b/ formula is equivalent to a strict /spl Sigma//sub 1//sup b/ formula (in which all non-sharply-bounded quantifiers are in front). Here we prove (sometimes subject to an assumption) that certain theories weaker than S/sub 2//sup 1/ do not prove either BB(/spl Sigma//sub 1//sup b/) or BB(/spl Sigma//sub 0//sup b/). We show (unconditionally) that V/sup 0/ does not prove BB(/spl Sigma//sub 1//sup B/), where V/sup 0/ (essentially I/spl Sigma//sub 0//sup 1,b/) is the two-sorted theory associated with the complexity class AC/sup 0/. We show that PV does not prove BB(/spl Sigma//sub 0//sup b/), assuming that integer factoring is not possible in probabilistic polynomial time. Johannsen and Pollet introduced the theory C/sub 2//sup 0/ associated with the complexity class TC/sup 0/, and later introduced an apparently weaker theory /spl Delta//sub 1//sup b/ - CR for the same class. We use our methods to show that /spl Delta//sub 1//sup b/ - CR is indeed weaker than C/sub 2//sup 0/, assuming that RSA is secure against probabilistic polynomial time attack. Our main tool is the KPT witnessing theorem.</description><subject>Applied sciences</subject><subject>Arithmetic</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Gold</subject><subject>Logical, boolean and switching functions</subject><subject>Polynomials</subject><subject>Theoretical computing</subject><issn>1043-6871</issn><issn>2575-5528</issn><isbn>9780769521923</isbn><isbn>0769521924</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkEtLxDAUhYMPsI7zA8RNNy5bb15NspTBx0DBheN6uE1ubLRTS1sQ_70DFVydxfn44BzGrjmUnIO7q7eb11IAqJJL7ioBJywT2uhCa2FP2doZC6ZyWnAn5BnLOChZVNbwC3Y5TR8AICoFGSt3LeXTPFL_Prf5V8xHGjr0dKB-zlOffxN-5jimuT3QnPwVO4_YTbT-yxV7e3zYbZ6L-uVpu7mviyRAzkVDHE3QKkYfK2HBoyXu0IaglHMOGww6QtBBaakbpQ16ZSSFRvJKO7JyxW4X74CTxy6O2Ps07YcxHXD82XMjlTouPXI3C5eI6L9eLpG_Ey5SCQ</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Cook, S.</creator><creator>Thapen, N.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>The strength of replacement in weak arithmetic</title><author>Cook, S. ; Thapen, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-be1a7d54ffcf6280ca8e19a8dd44999abad5f0d5d4535b457ac473edb31659e83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Arithmetic</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Gold</topic><topic>Logical, boolean and switching functions</topic><topic>Polynomials</topic><topic>Theoretical computing</topic><toplevel>online_resources</toplevel><creatorcontrib>Cook, S.</creatorcontrib><creatorcontrib>Thapen, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cook, S.</au><au>Thapen, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The strength of replacement in weak arithmetic</atitle><btitle>Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004</btitle><stitle>LICS</stitle><date>2004</date><risdate>2004</risdate><spage>256</spage><epage>264</epage><pages>256-264</pages><issn>1043-6871</issn><eissn>2575-5528</eissn><isbn>9780769521923</isbn><isbn>0769521924</isbn><abstract>The replacement (or collection or choice,) axiom scheme BB(/spl Gamma/) asserts bounded quantifier exchange as follows: /spl forall/I &lt; |a| /spl exist/x &lt; ao(i, x) /spl rarr/ /spl exist/w /spl forall/i &lt; |a| o (i, [w]/sub i/) where o is in the class /spl Gamma/ of formulas. The theory S/sub 2//sup 1/ proves the scheme BB(/spl Sigma//sub 1//sup b/), and thus in S/sub 2//sup 1/ every /spl Sigma//sub 1//sup b/ formula is equivalent to a strict /spl Sigma//sub 1//sup b/ formula (in which all non-sharply-bounded quantifiers are in front). Here we prove (sometimes subject to an assumption) that certain theories weaker than S/sub 2//sup 1/ do not prove either BB(/spl Sigma//sub 1//sup b/) or BB(/spl Sigma//sub 0//sup b/). We show (unconditionally) that V/sup 0/ does not prove BB(/spl Sigma//sub 1//sup B/), where V/sup 0/ (essentially I/spl Sigma//sub 0//sup 1,b/) is the two-sorted theory associated with the complexity class AC/sup 0/. We show that PV does not prove BB(/spl Sigma//sub 0//sup b/), assuming that integer factoring is not possible in probabilistic polynomial time. Johannsen and Pollet introduced the theory C/sub 2//sup 0/ associated with the complexity class TC/sup 0/, and later introduced an apparently weaker theory /spl Delta//sub 1//sup b/ - CR for the same class. We use our methods to show that /spl Delta//sub 1//sup b/ - CR is indeed weaker than C/sub 2//sup 0/, assuming that RSA is secure against probabilistic polynomial time attack. Our main tool is the KPT witnessing theorem.</abstract><cop>Los Alamitos, Calif</cop><pub>IEEE</pub><doi>10.1109/LICS.2004.1319620</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1043-6871
ispartof Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004, 2004, p.256-264
issn 1043-6871
2575-5528
language eng
recordid cdi_ieee_primary_1319620
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied sciences
Arithmetic
Computer science
Computer science
control theory
systems
Exact sciences and technology
Gold
Logical, boolean and switching functions
Polynomials
Theoretical computing
title The strength of replacement in weak arithmetic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20strength%20of%20replacement%20in%20weak%20arithmetic&rft.btitle=Proceedings%20of%20the%2019th%20Annual%20IEEE%20Symposium%20on%20Logic%20in%20Computer%20Science,%202004&rft.au=Cook,%20S.&rft.date=2004&rft.spage=256&rft.epage=264&rft.pages=256-264&rft.issn=1043-6871&rft.eissn=2575-5528&rft.isbn=9780769521923&rft.isbn_list=0769521924&rft_id=info:doi/10.1109/LICS.2004.1319620&rft_dat=%3Cpascalfrancis_6IE%3E17344552%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1319620&rfr_iscdi=true