Extension of air cooling for high power processors

Air cooling limits for a high power CPU with high local power density were explored through a thermal model. The thermal model included a 20 mm/spl times/20 mm die that was assumed to have power dissipation of 160 W and a local power density of 100 W/cm/sup 2/. Package size is assumed to be 50 mm/sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Guoping Xu, Guenin, B., Vogel, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193 Vol.1
container_issue
container_start_page 186
container_title
container_volume 1
creator Guoping Xu
Guenin, B.
Vogel, M.
description Air cooling limits for a high power CPU with high local power density were explored through a thermal model. The thermal model included a 20 mm/spl times/20 mm die that was assumed to have power dissipation of 160 W and a local power density of 100 W/cm/sup 2/. Package size is assumed to be 50 mm/spl times/50 mm, and the heat sink volume is 100 mm (flow length)/spl times/100 mm (width)/spl times/45 mm (height). The heat sink base is 5 mm thick. The effects of various package materials and configurations; thermal interface material between package and heat sink; heat sink base configurations, parallel plate fin geometries; and air flow conditions on the overall thermal performance have been investigated. Analytical methods are used to predict heat transfer and pressure drop for the parallel plate fin heat sink. Entropy generation rate minimization is applied in the optimization of the fin geometries and flow conditions. Finally, numerical model and heat sink performance results are used to predict air cooling limit.
doi_str_mv 10.1109/ITHERM.2004.1319172
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_1319172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1319172</ieee_id><sourcerecordid>17808350</sourcerecordid><originalsourceid>FETCH-LOGICAL-i135t-9fbda2e0c25ea6e7bedfd76af3d70afabb32594b35a4ff75f592cf90e9b18b223</originalsourceid><addsrcrecordid>eNpFUE1Lw0AUXBBBqfkFvezFY-J-ZLvZo5RqCxVB6rm8Td5rV2I27BbUf28ggsPAHGYYmGFsKUUlpXAPu8N28_ZSKSHqSmrppFVXrHC2ERN1o411N6zI-UNMqE2thL1lavN9wSGHOPBIHELibYx9GE6cYuLncDrzMX5h4mOKLeYcU75j1wR9xuJPF-z9aXNYb8v96_Nu_bgvg9TmUjryHSgUrTIIK7QeO-rsCkh3VgCB91oZV3ttoCayhoxTLTmBzsvGK6UX7H7uHSG30FOCoQ35OKbwCennKKdV0ygx5ZZzLiDivz0_oH8BCDhR9Q</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Extension of air cooling for high power processors</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Guoping Xu ; Guenin, B. ; Vogel, M.</creator><creatorcontrib>Guoping Xu ; Guenin, B. ; Vogel, M.</creatorcontrib><description>Air cooling limits for a high power CPU with high local power density were explored through a thermal model. The thermal model included a 20 mm/spl times/20 mm die that was assumed to have power dissipation of 160 W and a local power density of 100 W/cm/sup 2/. Package size is assumed to be 50 mm/spl times/50 mm, and the heat sink volume is 100 mm (flow length)/spl times/100 mm (width)/spl times/45 mm (height). The heat sink base is 5 mm thick. The effects of various package materials and configurations; thermal interface material between package and heat sink; heat sink base configurations, parallel plate fin geometries; and air flow conditions on the overall thermal performance have been investigated. Analytical methods are used to predict heat transfer and pressure drop for the parallel plate fin heat sink. Entropy generation rate minimization is applied in the optimization of the fin geometries and flow conditions. Finally, numerical model and heat sink performance results are used to predict air cooling limit.</description><identifier>ISBN: 9780780383579</identifier><identifier>ISBN: 0780383575</identifier><identifier>DOI: 10.1109/ITHERM.2004.1319172</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Applied sciences ; Cooling ; Design. Technologies. Operation analysis. Testing ; Electronic packaging thermal management ; Electronics ; Entropy ; Exact sciences and technology ; Heat pumps ; Heat sinks ; Heat transfer ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Power generation ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Surface resistance ; Thermal conductivity ; Thermal resistance</subject><ispartof>2004 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2004, Vol.1, p.186-193 Vol.1</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1319172$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1319172$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17808350$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Guoping Xu</creatorcontrib><creatorcontrib>Guenin, B.</creatorcontrib><creatorcontrib>Vogel, M.</creatorcontrib><title>Extension of air cooling for high power processors</title><title>2004 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems</title><addtitle>ITHERM</addtitle><description>Air cooling limits for a high power CPU with high local power density were explored through a thermal model. The thermal model included a 20 mm/spl times/20 mm die that was assumed to have power dissipation of 160 W and a local power density of 100 W/cm/sup 2/. Package size is assumed to be 50 mm/spl times/50 mm, and the heat sink volume is 100 mm (flow length)/spl times/100 mm (width)/spl times/45 mm (height). The heat sink base is 5 mm thick. The effects of various package materials and configurations; thermal interface material between package and heat sink; heat sink base configurations, parallel plate fin geometries; and air flow conditions on the overall thermal performance have been investigated. Analytical methods are used to predict heat transfer and pressure drop for the parallel plate fin heat sink. Entropy generation rate minimization is applied in the optimization of the fin geometries and flow conditions. Finally, numerical model and heat sink performance results are used to predict air cooling limit.</description><subject>Applied sciences</subject><subject>Cooling</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronic packaging thermal management</subject><subject>Electronics</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>Heat pumps</subject><subject>Heat sinks</subject><subject>Heat transfer</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Power generation</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Surface resistance</subject><subject>Thermal conductivity</subject><subject>Thermal resistance</subject><isbn>9780780383579</isbn><isbn>0780383575</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUE1Lw0AUXBBBqfkFvezFY-J-ZLvZo5RqCxVB6rm8Td5rV2I27BbUf28ggsPAHGYYmGFsKUUlpXAPu8N28_ZSKSHqSmrppFVXrHC2ERN1o411N6zI-UNMqE2thL1lavN9wSGHOPBIHELibYx9GE6cYuLncDrzMX5h4mOKLeYcU75j1wR9xuJPF-z9aXNYb8v96_Nu_bgvg9TmUjryHSgUrTIIK7QeO-rsCkh3VgCB91oZV3ttoCayhoxTLTmBzsvGK6UX7H7uHSG30FOCoQ35OKbwCennKKdV0ygx5ZZzLiDivz0_oH8BCDhR9Q</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Guoping Xu</creator><creator>Guenin, B.</creator><creator>Vogel, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Extension of air cooling for high power processors</title><author>Guoping Xu ; Guenin, B. ; Vogel, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i135t-9fbda2e0c25ea6e7bedfd76af3d70afabb32594b35a4ff75f592cf90e9b18b223</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Cooling</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronic packaging thermal management</topic><topic>Electronics</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>Heat pumps</topic><topic>Heat sinks</topic><topic>Heat transfer</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Power generation</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Surface resistance</topic><topic>Thermal conductivity</topic><topic>Thermal resistance</topic><toplevel>online_resources</toplevel><creatorcontrib>Guoping Xu</creatorcontrib><creatorcontrib>Guenin, B.</creatorcontrib><creatorcontrib>Vogel, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guoping Xu</au><au>Guenin, B.</au><au>Vogel, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Extension of air cooling for high power processors</atitle><btitle>2004 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems</btitle><stitle>ITHERM</stitle><date>2004</date><risdate>2004</risdate><volume>1</volume><spage>186</spage><epage>193 Vol.1</epage><pages>186-193 Vol.1</pages><isbn>9780780383579</isbn><isbn>0780383575</isbn><abstract>Air cooling limits for a high power CPU with high local power density were explored through a thermal model. The thermal model included a 20 mm/spl times/20 mm die that was assumed to have power dissipation of 160 W and a local power density of 100 W/cm/sup 2/. Package size is assumed to be 50 mm/spl times/50 mm, and the heat sink volume is 100 mm (flow length)/spl times/100 mm (width)/spl times/45 mm (height). The heat sink base is 5 mm thick. The effects of various package materials and configurations; thermal interface material between package and heat sink; heat sink base configurations, parallel plate fin geometries; and air flow conditions on the overall thermal performance have been investigated. Analytical methods are used to predict heat transfer and pressure drop for the parallel plate fin heat sink. Entropy generation rate minimization is applied in the optimization of the fin geometries and flow conditions. Finally, numerical model and heat sink performance results are used to predict air cooling limit.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/ITHERM.2004.1319172</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780383579
ispartof 2004 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2004, Vol.1, p.186-193 Vol.1
issn
language eng
recordid cdi_ieee_primary_1319172
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied sciences
Cooling
Design. Technologies. Operation analysis. Testing
Electronic packaging thermal management
Electronics
Entropy
Exact sciences and technology
Heat pumps
Heat sinks
Heat transfer
Integrated circuits
Integrated circuits by function (including memories and processors)
Power generation
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Surface resistance
Thermal conductivity
Thermal resistance
title Extension of air cooling for high power processors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A20%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Extension%20of%20air%20cooling%20for%20high%20power%20processors&rft.btitle=2004%209th%20Intersociety%20Conference%20on%20Thermal%20and%20Thermomechanical%20Phenomena%20in%20Electronic%20Systems&rft.au=Guoping%20Xu&rft.date=2004&rft.volume=1&rft.spage=186&rft.epage=193%20Vol.1&rft.pages=186-193%20Vol.1&rft.isbn=9780780383579&rft.isbn_list=0780383575&rft_id=info:doi/10.1109/ITHERM.2004.1319172&rft_dat=%3Cpascalfrancis_6IE%3E17808350%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1319172&rfr_iscdi=true