Extension of air cooling for high power processors
Air cooling limits for a high power CPU with high local power density were explored through a thermal model. The thermal model included a 20 mm/spl times/20 mm die that was assumed to have power dissipation of 160 W and a local power density of 100 W/cm/sup 2/. Package size is assumed to be 50 mm/sp...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 193 Vol.1 |
---|---|
container_issue | |
container_start_page | 186 |
container_title | |
container_volume | 1 |
creator | Guoping Xu Guenin, B. Vogel, M. |
description | Air cooling limits for a high power CPU with high local power density were explored through a thermal model. The thermal model included a 20 mm/spl times/20 mm die that was assumed to have power dissipation of 160 W and a local power density of 100 W/cm/sup 2/. Package size is assumed to be 50 mm/spl times/50 mm, and the heat sink volume is 100 mm (flow length)/spl times/100 mm (width)/spl times/45 mm (height). The heat sink base is 5 mm thick. The effects of various package materials and configurations; thermal interface material between package and heat sink; heat sink base configurations, parallel plate fin geometries; and air flow conditions on the overall thermal performance have been investigated. Analytical methods are used to predict heat transfer and pressure drop for the parallel plate fin heat sink. Entropy generation rate minimization is applied in the optimization of the fin geometries and flow conditions. Finally, numerical model and heat sink performance results are used to predict air cooling limit. |
doi_str_mv | 10.1109/ITHERM.2004.1319172 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_1319172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1319172</ieee_id><sourcerecordid>17808350</sourcerecordid><originalsourceid>FETCH-LOGICAL-i135t-9fbda2e0c25ea6e7bedfd76af3d70afabb32594b35a4ff75f592cf90e9b18b223</originalsourceid><addsrcrecordid>eNpFUE1Lw0AUXBBBqfkFvezFY-J-ZLvZo5RqCxVB6rm8Td5rV2I27BbUf28ggsPAHGYYmGFsKUUlpXAPu8N28_ZSKSHqSmrppFVXrHC2ERN1o411N6zI-UNMqE2thL1lavN9wSGHOPBIHELibYx9GE6cYuLncDrzMX5h4mOKLeYcU75j1wR9xuJPF-z9aXNYb8v96_Nu_bgvg9TmUjryHSgUrTIIK7QeO-rsCkh3VgCB91oZV3ttoCayhoxTLTmBzsvGK6UX7H7uHSG30FOCoQ35OKbwCennKKdV0ygx5ZZzLiDivz0_oH8BCDhR9Q</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Extension of air cooling for high power processors</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Guoping Xu ; Guenin, B. ; Vogel, M.</creator><creatorcontrib>Guoping Xu ; Guenin, B. ; Vogel, M.</creatorcontrib><description>Air cooling limits for a high power CPU with high local power density were explored through a thermal model. The thermal model included a 20 mm/spl times/20 mm die that was assumed to have power dissipation of 160 W and a local power density of 100 W/cm/sup 2/. Package size is assumed to be 50 mm/spl times/50 mm, and the heat sink volume is 100 mm (flow length)/spl times/100 mm (width)/spl times/45 mm (height). The heat sink base is 5 mm thick. The effects of various package materials and configurations; thermal interface material between package and heat sink; heat sink base configurations, parallel plate fin geometries; and air flow conditions on the overall thermal performance have been investigated. Analytical methods are used to predict heat transfer and pressure drop for the parallel plate fin heat sink. Entropy generation rate minimization is applied in the optimization of the fin geometries and flow conditions. Finally, numerical model and heat sink performance results are used to predict air cooling limit.</description><identifier>ISBN: 9780780383579</identifier><identifier>ISBN: 0780383575</identifier><identifier>DOI: 10.1109/ITHERM.2004.1319172</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Applied sciences ; Cooling ; Design. Technologies. Operation analysis. Testing ; Electronic packaging thermal management ; Electronics ; Entropy ; Exact sciences and technology ; Heat pumps ; Heat sinks ; Heat transfer ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Power generation ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Surface resistance ; Thermal conductivity ; Thermal resistance</subject><ispartof>2004 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2004, Vol.1, p.186-193 Vol.1</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1319172$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1319172$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17808350$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Guoping Xu</creatorcontrib><creatorcontrib>Guenin, B.</creatorcontrib><creatorcontrib>Vogel, M.</creatorcontrib><title>Extension of air cooling for high power processors</title><title>2004 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems</title><addtitle>ITHERM</addtitle><description>Air cooling limits for a high power CPU with high local power density were explored through a thermal model. The thermal model included a 20 mm/spl times/20 mm die that was assumed to have power dissipation of 160 W and a local power density of 100 W/cm/sup 2/. Package size is assumed to be 50 mm/spl times/50 mm, and the heat sink volume is 100 mm (flow length)/spl times/100 mm (width)/spl times/45 mm (height). The heat sink base is 5 mm thick. The effects of various package materials and configurations; thermal interface material between package and heat sink; heat sink base configurations, parallel plate fin geometries; and air flow conditions on the overall thermal performance have been investigated. Analytical methods are used to predict heat transfer and pressure drop for the parallel plate fin heat sink. Entropy generation rate minimization is applied in the optimization of the fin geometries and flow conditions. Finally, numerical model and heat sink performance results are used to predict air cooling limit.</description><subject>Applied sciences</subject><subject>Cooling</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronic packaging thermal management</subject><subject>Electronics</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>Heat pumps</subject><subject>Heat sinks</subject><subject>Heat transfer</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Power generation</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Surface resistance</subject><subject>Thermal conductivity</subject><subject>Thermal resistance</subject><isbn>9780780383579</isbn><isbn>0780383575</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUE1Lw0AUXBBBqfkFvezFY-J-ZLvZo5RqCxVB6rm8Td5rV2I27BbUf28ggsPAHGYYmGFsKUUlpXAPu8N28_ZSKSHqSmrppFVXrHC2ERN1o411N6zI-UNMqE2thL1lavN9wSGHOPBIHELibYx9GE6cYuLncDrzMX5h4mOKLeYcU75j1wR9xuJPF-z9aXNYb8v96_Nu_bgvg9TmUjryHSgUrTIIK7QeO-rsCkh3VgCB91oZV3ttoCayhoxTLTmBzsvGK6UX7H7uHSG30FOCoQ35OKbwCennKKdV0ygx5ZZzLiDivz0_oH8BCDhR9Q</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Guoping Xu</creator><creator>Guenin, B.</creator><creator>Vogel, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Extension of air cooling for high power processors</title><author>Guoping Xu ; Guenin, B. ; Vogel, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i135t-9fbda2e0c25ea6e7bedfd76af3d70afabb32594b35a4ff75f592cf90e9b18b223</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Cooling</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronic packaging thermal management</topic><topic>Electronics</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>Heat pumps</topic><topic>Heat sinks</topic><topic>Heat transfer</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Power generation</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Surface resistance</topic><topic>Thermal conductivity</topic><topic>Thermal resistance</topic><toplevel>online_resources</toplevel><creatorcontrib>Guoping Xu</creatorcontrib><creatorcontrib>Guenin, B.</creatorcontrib><creatorcontrib>Vogel, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guoping Xu</au><au>Guenin, B.</au><au>Vogel, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Extension of air cooling for high power processors</atitle><btitle>2004 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems</btitle><stitle>ITHERM</stitle><date>2004</date><risdate>2004</risdate><volume>1</volume><spage>186</spage><epage>193 Vol.1</epage><pages>186-193 Vol.1</pages><isbn>9780780383579</isbn><isbn>0780383575</isbn><abstract>Air cooling limits for a high power CPU with high local power density were explored through a thermal model. The thermal model included a 20 mm/spl times/20 mm die that was assumed to have power dissipation of 160 W and a local power density of 100 W/cm/sup 2/. Package size is assumed to be 50 mm/spl times/50 mm, and the heat sink volume is 100 mm (flow length)/spl times/100 mm (width)/spl times/45 mm (height). The heat sink base is 5 mm thick. The effects of various package materials and configurations; thermal interface material between package and heat sink; heat sink base configurations, parallel plate fin geometries; and air flow conditions on the overall thermal performance have been investigated. Analytical methods are used to predict heat transfer and pressure drop for the parallel plate fin heat sink. Entropy generation rate minimization is applied in the optimization of the fin geometries and flow conditions. Finally, numerical model and heat sink performance results are used to predict air cooling limit.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/ITHERM.2004.1319172</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780383579 |
ispartof | 2004 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2004, Vol.1, p.186-193 Vol.1 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1319172 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Applied sciences Cooling Design. Technologies. Operation analysis. Testing Electronic packaging thermal management Electronics Entropy Exact sciences and technology Heat pumps Heat sinks Heat transfer Integrated circuits Integrated circuits by function (including memories and processors) Power generation Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Surface resistance Thermal conductivity Thermal resistance |
title | Extension of air cooling for high power processors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A20%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Extension%20of%20air%20cooling%20for%20high%20power%20processors&rft.btitle=2004%209th%20Intersociety%20Conference%20on%20Thermal%20and%20Thermomechanical%20Phenomena%20in%20Electronic%20Systems&rft.au=Guoping%20Xu&rft.date=2004&rft.volume=1&rft.spage=186&rft.epage=193%20Vol.1&rft.pages=186-193%20Vol.1&rft.isbn=9780780383579&rft.isbn_list=0780383575&rft_id=info:doi/10.1109/ITHERM.2004.1319172&rft_dat=%3Cpascalfrancis_6IE%3E17808350%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1319172&rfr_iscdi=true |