Gate-drain charge analysis for switching in power trench MOSFETs
For the switching performance of low-voltage (LV) power MOSFETs, the gate-drain charge density (Q/sub gd/) is an important parameter. The so-called figure-of-merit, which is defined as the product of the specific on-resistance (R/sub ds,on/) and Q/sub gd/ is commonly used for quantifying the switchi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2004-08, Vol.51 (8), p.1323-1330 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1330 |
---|---|
container_issue | 8 |
container_start_page | 1323 |
container_title | IEEE transactions on electron devices |
container_volume | 51 |
creator | Hueting, R.J.E. Hijzen, E.A. Heringa, A. Ludikhuize, A.W. Zandt, M.A.Ai |
description | For the switching performance of low-voltage (LV) power MOSFETs, the gate-drain charge density (Q/sub gd/) is an important parameter. The so-called figure-of-merit, which is defined as the product of the specific on-resistance (R/sub ds,on/) and Q/sub gd/ is commonly used for quantifying the switching performance for a specified off-state breakdown voltage (BV/sub ds/). In this paper, we analyzed the switching behavior in power trench MOSFETs by using experiments and simulations, focusing on the charge density Q/sub gd/. The results of this analysis can be used for further optimization of these devices. The results show that the Q/sub d/ can be split into three charge contributions: accumulation, depletion, and inversion charge. It is shown that the inversion charge is located mainly underneath the trench bottom. The accumulation and depletion charge contribute each about 45% in conventional LV trench MOSFETs and can be reduced by using a thick bottom oxide in a shallow trench gate just extending in the drift region. Further, we derived an analytical model for calculating the Q/sub gd/, that takes into account the geometry dependence. |
doi_str_mv | 10.1109/TED.2004.832096 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1317156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1317156</ieee_id><sourcerecordid>28297937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-c4743a63d9c364b57449116938872357bdf9a2fe6b867b870fc446b31b7eca273</originalsourceid><addsrcrecordid>eNp9kEtLAzEURoMoWKtrF26CC11Nm_djp9T6gEoX1nXIpJl2ynSmJlNK_70ZRhBcuElION_HvQeAa4xGGCM9XkyfRgQhNlKUIC1OwABzLjMtmDgFA4SwyjRV9BxcxLhJT8EYGYCHF9v6bBlsWUO3tmHloa1tdYxlhEUTYDyUrVuX9QomYNccfIBt8LVbw_f5x_N0ES_BWWGr6K9-7iH4TN-T12w2f3mbPM4yxzBv0ykZtYIutaOC5VwypjEWaSIlCeUyXxbaksKLXAmZK4kKx5jIKc6ld5ZIOgT3fe8uNF97H1uzLaPzVWVr3-yjUVpgxbgQibz7lySKaKlpV3n7B9w0-5C2T22KJaeYdm3jHnKhiTH4wuxCubXhaDAynXiTxJtOvOnFp8RNnyi99780xRJzQb8Bi4J78Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884109136</pqid></control><display><type>article</type><title>Gate-drain charge analysis for switching in power trench MOSFETs</title><source>IEEE Electronic Library (IEL)</source><creator>Hueting, R.J.E. ; Hijzen, E.A. ; Heringa, A. ; Ludikhuize, A.W. ; Zandt, M.A.Ai</creator><creatorcontrib>Hueting, R.J.E. ; Hijzen, E.A. ; Heringa, A. ; Ludikhuize, A.W. ; Zandt, M.A.Ai</creatorcontrib><description>For the switching performance of low-voltage (LV) power MOSFETs, the gate-drain charge density (Q/sub gd/) is an important parameter. The so-called figure-of-merit, which is defined as the product of the specific on-resistance (R/sub ds,on/) and Q/sub gd/ is commonly used for quantifying the switching performance for a specified off-state breakdown voltage (BV/sub ds/). In this paper, we analyzed the switching behavior in power trench MOSFETs by using experiments and simulations, focusing on the charge density Q/sub gd/. The results of this analysis can be used for further optimization of these devices. The results show that the Q/sub d/ can be split into three charge contributions: accumulation, depletion, and inversion charge. It is shown that the inversion charge is located mainly underneath the trench bottom. The accumulation and depletion charge contribute each about 45% in conventional LV trench MOSFETs and can be reduced by using a thick bottom oxide in a shallow trench gate just extending in the drift region. Further, we derived an analytical model for calculating the Q/sub gd/, that takes into account the geometry dependence.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2004.832096</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Charge ; DC-DC power conversion ; Depletion ; Devices ; Electric breakdown ; Inversions ; Mathematical models ; MOSFETs ; Power MOSFETs ; Semiconductor device modeling ; Switches ; Switching ; Trenches</subject><ispartof>IEEE transactions on electron devices, 2004-08, Vol.51 (8), p.1323-1330</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-c4743a63d9c364b57449116938872357bdf9a2fe6b867b870fc446b31b7eca273</citedby><cites>FETCH-LOGICAL-c415t-c4743a63d9c364b57449116938872357bdf9a2fe6b867b870fc446b31b7eca273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1317156$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1317156$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hueting, R.J.E.</creatorcontrib><creatorcontrib>Hijzen, E.A.</creatorcontrib><creatorcontrib>Heringa, A.</creatorcontrib><creatorcontrib>Ludikhuize, A.W.</creatorcontrib><creatorcontrib>Zandt, M.A.Ai</creatorcontrib><title>Gate-drain charge analysis for switching in power trench MOSFETs</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>For the switching performance of low-voltage (LV) power MOSFETs, the gate-drain charge density (Q/sub gd/) is an important parameter. The so-called figure-of-merit, which is defined as the product of the specific on-resistance (R/sub ds,on/) and Q/sub gd/ is commonly used for quantifying the switching performance for a specified off-state breakdown voltage (BV/sub ds/). In this paper, we analyzed the switching behavior in power trench MOSFETs by using experiments and simulations, focusing on the charge density Q/sub gd/. The results of this analysis can be used for further optimization of these devices. The results show that the Q/sub d/ can be split into three charge contributions: accumulation, depletion, and inversion charge. It is shown that the inversion charge is located mainly underneath the trench bottom. The accumulation and depletion charge contribute each about 45% in conventional LV trench MOSFETs and can be reduced by using a thick bottom oxide in a shallow trench gate just extending in the drift region. Further, we derived an analytical model for calculating the Q/sub gd/, that takes into account the geometry dependence.</description><subject>Charge</subject><subject>DC-DC power conversion</subject><subject>Depletion</subject><subject>Devices</subject><subject>Electric breakdown</subject><subject>Inversions</subject><subject>Mathematical models</subject><subject>MOSFETs</subject><subject>Power MOSFETs</subject><subject>Semiconductor device modeling</subject><subject>Switches</subject><subject>Switching</subject><subject>Trenches</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kEtLAzEURoMoWKtrF26CC11Nm_djp9T6gEoX1nXIpJl2ynSmJlNK_70ZRhBcuElION_HvQeAa4xGGCM9XkyfRgQhNlKUIC1OwABzLjMtmDgFA4SwyjRV9BxcxLhJT8EYGYCHF9v6bBlsWUO3tmHloa1tdYxlhEUTYDyUrVuX9QomYNccfIBt8LVbw_f5x_N0ES_BWWGr6K9-7iH4TN-T12w2f3mbPM4yxzBv0ykZtYIutaOC5VwypjEWaSIlCeUyXxbaksKLXAmZK4kKx5jIKc6ld5ZIOgT3fe8uNF97H1uzLaPzVWVr3-yjUVpgxbgQibz7lySKaKlpV3n7B9w0-5C2T22KJaeYdm3jHnKhiTH4wuxCubXhaDAynXiTxJtOvOnFp8RNnyi99780xRJzQb8Bi4J78Q</recordid><startdate>20040801</startdate><enddate>20040801</enddate><creator>Hueting, R.J.E.</creator><creator>Hijzen, E.A.</creator><creator>Heringa, A.</creator><creator>Ludikhuize, A.W.</creator><creator>Zandt, M.A.Ai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040801</creationdate><title>Gate-drain charge analysis for switching in power trench MOSFETs</title><author>Hueting, R.J.E. ; Hijzen, E.A. ; Heringa, A. ; Ludikhuize, A.W. ; Zandt, M.A.Ai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-c4743a63d9c364b57449116938872357bdf9a2fe6b867b870fc446b31b7eca273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Charge</topic><topic>DC-DC power conversion</topic><topic>Depletion</topic><topic>Devices</topic><topic>Electric breakdown</topic><topic>Inversions</topic><topic>Mathematical models</topic><topic>MOSFETs</topic><topic>Power MOSFETs</topic><topic>Semiconductor device modeling</topic><topic>Switches</topic><topic>Switching</topic><topic>Trenches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hueting, R.J.E.</creatorcontrib><creatorcontrib>Hijzen, E.A.</creatorcontrib><creatorcontrib>Heringa, A.</creatorcontrib><creatorcontrib>Ludikhuize, A.W.</creatorcontrib><creatorcontrib>Zandt, M.A.Ai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hueting, R.J.E.</au><au>Hijzen, E.A.</au><au>Heringa, A.</au><au>Ludikhuize, A.W.</au><au>Zandt, M.A.Ai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gate-drain charge analysis for switching in power trench MOSFETs</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2004-08-01</date><risdate>2004</risdate><volume>51</volume><issue>8</issue><spage>1323</spage><epage>1330</epage><pages>1323-1330</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>For the switching performance of low-voltage (LV) power MOSFETs, the gate-drain charge density (Q/sub gd/) is an important parameter. The so-called figure-of-merit, which is defined as the product of the specific on-resistance (R/sub ds,on/) and Q/sub gd/ is commonly used for quantifying the switching performance for a specified off-state breakdown voltage (BV/sub ds/). In this paper, we analyzed the switching behavior in power trench MOSFETs by using experiments and simulations, focusing on the charge density Q/sub gd/. The results of this analysis can be used for further optimization of these devices. The results show that the Q/sub d/ can be split into three charge contributions: accumulation, depletion, and inversion charge. It is shown that the inversion charge is located mainly underneath the trench bottom. The accumulation and depletion charge contribute each about 45% in conventional LV trench MOSFETs and can be reduced by using a thick bottom oxide in a shallow trench gate just extending in the drift region. Further, we derived an analytical model for calculating the Q/sub gd/, that takes into account the geometry dependence.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2004.832096</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2004-08, Vol.51 (8), p.1323-1330 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_1317156 |
source | IEEE Electronic Library (IEL) |
subjects | Charge DC-DC power conversion Depletion Devices Electric breakdown Inversions Mathematical models MOSFETs Power MOSFETs Semiconductor device modeling Switches Switching Trenches |
title | Gate-drain charge analysis for switching in power trench MOSFETs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gate-drain%20charge%20analysis%20for%20switching%20in%20power%20trench%20MOSFETs&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Hueting,%20R.J.E.&rft.date=2004-08-01&rft.volume=51&rft.issue=8&rft.spage=1323&rft.epage=1330&rft.pages=1323-1330&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2004.832096&rft_dat=%3Cproquest_RIE%3E28297937%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884109136&rft_id=info:pmid/&rft_ieee_id=1317156&rfr_iscdi=true |