Adversarial analyses of window backoff strategies

Summary form only given. Backoff strategies have typically been analyzed by making statistical assumptions on the distribution of problem inputs. Although these analyses have provided valuable insights into the efficacy of various backoff strategies, they leave open the question as to which backoff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bender, M.A., Farach-Colton, M., He, S., Kuszmaul, B.C., Leiserson, C.E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 203
container_title
container_volume
creator Bender, M.A.
Farach-Colton, M.
He, S.
Kuszmaul, B.C.
Leiserson, C.E.
description Summary form only given. Backoff strategies have typically been analyzed by making statistical assumptions on the distribution of problem inputs. Although these analyses have provided valuable insights into the efficacy of various backoff strategies, they leave open the question as to which backoff algorithms perform best in the worst case or on inputs, such as bursty inputs, that are not covered by the statistical models. We analyze randomized backoff strategies using worst-case assumptions on the inputs.
doi_str_mv 10.1109/IPDPS.2004.1303230
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1303230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1303230</ieee_id><sourcerecordid>1303230</sourcerecordid><originalsourceid>FETCH-ieee_primary_13032303</originalsourceid><addsrcrecordid>eNp9jbsOgkAQAC8xJr74AW3uB8Q97pBQGh_RjkR7ssqeOUUwt0TC32tB7TRTTDFCzBWESkG6OmW77BxGACZUGnSkYSAmkKzTOFI6gpEImB_ww5jYJPFYqE3xIc_oHZYSKyw7Jpa1la2rirqVV7w9a2slNx4bujvimRhaLJmC3lOxOOwv2-PSEVH-9u6Fvsv7u_5fv3WaM7U</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adversarial analyses of window backoff strategies</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bender, M.A. ; Farach-Colton, M. ; He, S. ; Kuszmaul, B.C. ; Leiserson, C.E.</creator><creatorcontrib>Bender, M.A. ; Farach-Colton, M. ; He, S. ; Kuszmaul, B.C. ; Leiserson, C.E.</creatorcontrib><description>Summary form only given. Backoff strategies have typically been analyzed by making statistical assumptions on the distribution of problem inputs. Although these analyses have provided valuable insights into the efficacy of various backoff strategies, they leave open the question as to which backoff algorithms perform best in the worst case or on inputs, such as bursty inputs, that are not covered by the statistical models. We analyze randomized backoff strategies using worst-case assumptions on the inputs.</description><identifier>ISBN: 0769521320</identifier><identifier>ISBN: 9780769521329</identifier><identifier>DOI: 10.1109/IPDPS.2004.1303230</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Delay effects ; Distributed processing ; Feedback ; Helium ; Laboratories ; Partitioning algorithms ; Performance analysis ; Stability ; Throughput</subject><ispartof>18th International Parallel and Distributed Processing Symposium, 2004. Proceedings, 2004, p.203</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1303230$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1303230$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bender, M.A.</creatorcontrib><creatorcontrib>Farach-Colton, M.</creatorcontrib><creatorcontrib>He, S.</creatorcontrib><creatorcontrib>Kuszmaul, B.C.</creatorcontrib><creatorcontrib>Leiserson, C.E.</creatorcontrib><title>Adversarial analyses of window backoff strategies</title><title>18th International Parallel and Distributed Processing Symposium, 2004. Proceedings</title><addtitle>IPDPS</addtitle><description>Summary form only given. Backoff strategies have typically been analyzed by making statistical assumptions on the distribution of problem inputs. Although these analyses have provided valuable insights into the efficacy of various backoff strategies, they leave open the question as to which backoff algorithms perform best in the worst case or on inputs, such as bursty inputs, that are not covered by the statistical models. We analyze randomized backoff strategies using worst-case assumptions on the inputs.</description><subject>Algorithm design and analysis</subject><subject>Delay effects</subject><subject>Distributed processing</subject><subject>Feedback</subject><subject>Helium</subject><subject>Laboratories</subject><subject>Partitioning algorithms</subject><subject>Performance analysis</subject><subject>Stability</subject><subject>Throughput</subject><isbn>0769521320</isbn><isbn>9780769521329</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jbsOgkAQAC8xJr74AW3uB8Q97pBQGh_RjkR7ssqeOUUwt0TC32tB7TRTTDFCzBWESkG6OmW77BxGACZUGnSkYSAmkKzTOFI6gpEImB_ww5jYJPFYqE3xIc_oHZYSKyw7Jpa1la2rirqVV7w9a2slNx4bujvimRhaLJmC3lOxOOwv2-PSEVH-9u6Fvsv7u_5fv3WaM7U</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Bender, M.A.</creator><creator>Farach-Colton, M.</creator><creator>He, S.</creator><creator>Kuszmaul, B.C.</creator><creator>Leiserson, C.E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>Adversarial analyses of window backoff strategies</title><author>Bender, M.A. ; Farach-Colton, M. ; He, S. ; Kuszmaul, B.C. ; Leiserson, C.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_13032303</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithm design and analysis</topic><topic>Delay effects</topic><topic>Distributed processing</topic><topic>Feedback</topic><topic>Helium</topic><topic>Laboratories</topic><topic>Partitioning algorithms</topic><topic>Performance analysis</topic><topic>Stability</topic><topic>Throughput</topic><toplevel>online_resources</toplevel><creatorcontrib>Bender, M.A.</creatorcontrib><creatorcontrib>Farach-Colton, M.</creatorcontrib><creatorcontrib>He, S.</creatorcontrib><creatorcontrib>Kuszmaul, B.C.</creatorcontrib><creatorcontrib>Leiserson, C.E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bender, M.A.</au><au>Farach-Colton, M.</au><au>He, S.</au><au>Kuszmaul, B.C.</au><au>Leiserson, C.E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adversarial analyses of window backoff strategies</atitle><btitle>18th International Parallel and Distributed Processing Symposium, 2004. Proceedings</btitle><stitle>IPDPS</stitle><date>2004</date><risdate>2004</risdate><spage>203</spage><pages>203-</pages><isbn>0769521320</isbn><isbn>9780769521329</isbn><abstract>Summary form only given. Backoff strategies have typically been analyzed by making statistical assumptions on the distribution of problem inputs. Although these analyses have provided valuable insights into the efficacy of various backoff strategies, they leave open the question as to which backoff algorithms perform best in the worst case or on inputs, such as bursty inputs, that are not covered by the statistical models. We analyze randomized backoff strategies using worst-case assumptions on the inputs.</abstract><pub>IEEE</pub><doi>10.1109/IPDPS.2004.1303230</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769521320
ispartof 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings, 2004, p.203
issn
language eng
recordid cdi_ieee_primary_1303230
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Delay effects
Distributed processing
Feedback
Helium
Laboratories
Partitioning algorithms
Performance analysis
Stability
Throughput
title Adversarial analyses of window backoff strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T01%3A11%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adversarial%20analyses%20of%20window%20backoff%20strategies&rft.btitle=18th%20International%20Parallel%20and%20Distributed%20Processing%20Symposium,%202004.%20Proceedings&rft.au=Bender,%20M.A.&rft.date=2004&rft.spage=203&rft.pages=203-&rft.isbn=0769521320&rft.isbn_list=9780769521329&rft_id=info:doi/10.1109/IPDPS.2004.1303230&rft_dat=%3Cieee_6IE%3E1303230%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1303230&rfr_iscdi=true