Adversarial analyses of window backoff strategies
Summary form only given. Backoff strategies have typically been analyzed by making statistical assumptions on the distribution of problem inputs. Although these analyses have provided valuable insights into the efficacy of various backoff strategies, they leave open the question as to which backoff...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 203 |
container_title | |
container_volume | |
creator | Bender, M.A. Farach-Colton, M. He, S. Kuszmaul, B.C. Leiserson, C.E. |
description | Summary form only given. Backoff strategies have typically been analyzed by making statistical assumptions on the distribution of problem inputs. Although these analyses have provided valuable insights into the efficacy of various backoff strategies, they leave open the question as to which backoff algorithms perform best in the worst case or on inputs, such as bursty inputs, that are not covered by the statistical models. We analyze randomized backoff strategies using worst-case assumptions on the inputs. |
doi_str_mv | 10.1109/IPDPS.2004.1303230 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1303230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1303230</ieee_id><sourcerecordid>1303230</sourcerecordid><originalsourceid>FETCH-ieee_primary_13032303</originalsourceid><addsrcrecordid>eNp9jbsOgkAQAC8xJr74AW3uB8Q97pBQGh_RjkR7ssqeOUUwt0TC32tB7TRTTDFCzBWESkG6OmW77BxGACZUGnSkYSAmkKzTOFI6gpEImB_ww5jYJPFYqE3xIc_oHZYSKyw7Jpa1la2rirqVV7w9a2slNx4bujvimRhaLJmC3lOxOOwv2-PSEVH-9u6Fvsv7u_5fv3WaM7U</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adversarial analyses of window backoff strategies</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bender, M.A. ; Farach-Colton, M. ; He, S. ; Kuszmaul, B.C. ; Leiserson, C.E.</creator><creatorcontrib>Bender, M.A. ; Farach-Colton, M. ; He, S. ; Kuszmaul, B.C. ; Leiserson, C.E.</creatorcontrib><description>Summary form only given. Backoff strategies have typically been analyzed by making statistical assumptions on the distribution of problem inputs. Although these analyses have provided valuable insights into the efficacy of various backoff strategies, they leave open the question as to which backoff algorithms perform best in the worst case or on inputs, such as bursty inputs, that are not covered by the statistical models. We analyze randomized backoff strategies using worst-case assumptions on the inputs.</description><identifier>ISBN: 0769521320</identifier><identifier>ISBN: 9780769521329</identifier><identifier>DOI: 10.1109/IPDPS.2004.1303230</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Delay effects ; Distributed processing ; Feedback ; Helium ; Laboratories ; Partitioning algorithms ; Performance analysis ; Stability ; Throughput</subject><ispartof>18th International Parallel and Distributed Processing Symposium, 2004. Proceedings, 2004, p.203</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1303230$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1303230$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bender, M.A.</creatorcontrib><creatorcontrib>Farach-Colton, M.</creatorcontrib><creatorcontrib>He, S.</creatorcontrib><creatorcontrib>Kuszmaul, B.C.</creatorcontrib><creatorcontrib>Leiserson, C.E.</creatorcontrib><title>Adversarial analyses of window backoff strategies</title><title>18th International Parallel and Distributed Processing Symposium, 2004. Proceedings</title><addtitle>IPDPS</addtitle><description>Summary form only given. Backoff strategies have typically been analyzed by making statistical assumptions on the distribution of problem inputs. Although these analyses have provided valuable insights into the efficacy of various backoff strategies, they leave open the question as to which backoff algorithms perform best in the worst case or on inputs, such as bursty inputs, that are not covered by the statistical models. We analyze randomized backoff strategies using worst-case assumptions on the inputs.</description><subject>Algorithm design and analysis</subject><subject>Delay effects</subject><subject>Distributed processing</subject><subject>Feedback</subject><subject>Helium</subject><subject>Laboratories</subject><subject>Partitioning algorithms</subject><subject>Performance analysis</subject><subject>Stability</subject><subject>Throughput</subject><isbn>0769521320</isbn><isbn>9780769521329</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jbsOgkAQAC8xJr74AW3uB8Q97pBQGh_RjkR7ssqeOUUwt0TC32tB7TRTTDFCzBWESkG6OmW77BxGACZUGnSkYSAmkKzTOFI6gpEImB_ww5jYJPFYqE3xIc_oHZYSKyw7Jpa1la2rirqVV7w9a2slNx4bujvimRhaLJmC3lOxOOwv2-PSEVH-9u6Fvsv7u_5fv3WaM7U</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Bender, M.A.</creator><creator>Farach-Colton, M.</creator><creator>He, S.</creator><creator>Kuszmaul, B.C.</creator><creator>Leiserson, C.E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>Adversarial analyses of window backoff strategies</title><author>Bender, M.A. ; Farach-Colton, M. ; He, S. ; Kuszmaul, B.C. ; Leiserson, C.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_13032303</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithm design and analysis</topic><topic>Delay effects</topic><topic>Distributed processing</topic><topic>Feedback</topic><topic>Helium</topic><topic>Laboratories</topic><topic>Partitioning algorithms</topic><topic>Performance analysis</topic><topic>Stability</topic><topic>Throughput</topic><toplevel>online_resources</toplevel><creatorcontrib>Bender, M.A.</creatorcontrib><creatorcontrib>Farach-Colton, M.</creatorcontrib><creatorcontrib>He, S.</creatorcontrib><creatorcontrib>Kuszmaul, B.C.</creatorcontrib><creatorcontrib>Leiserson, C.E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bender, M.A.</au><au>Farach-Colton, M.</au><au>He, S.</au><au>Kuszmaul, B.C.</au><au>Leiserson, C.E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adversarial analyses of window backoff strategies</atitle><btitle>18th International Parallel and Distributed Processing Symposium, 2004. Proceedings</btitle><stitle>IPDPS</stitle><date>2004</date><risdate>2004</risdate><spage>203</spage><pages>203-</pages><isbn>0769521320</isbn><isbn>9780769521329</isbn><abstract>Summary form only given. Backoff strategies have typically been analyzed by making statistical assumptions on the distribution of problem inputs. Although these analyses have provided valuable insights into the efficacy of various backoff strategies, they leave open the question as to which backoff algorithms perform best in the worst case or on inputs, such as bursty inputs, that are not covered by the statistical models. We analyze randomized backoff strategies using worst-case assumptions on the inputs.</abstract><pub>IEEE</pub><doi>10.1109/IPDPS.2004.1303230</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0769521320 |
ispartof | 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings, 2004, p.203 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1303230 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Delay effects Distributed processing Feedback Helium Laboratories Partitioning algorithms Performance analysis Stability Throughput |
title | Adversarial analyses of window backoff strategies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T01%3A11%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adversarial%20analyses%20of%20window%20backoff%20strategies&rft.btitle=18th%20International%20Parallel%20and%20Distributed%20Processing%20Symposium,%202004.%20Proceedings&rft.au=Bender,%20M.A.&rft.date=2004&rft.spage=203&rft.pages=203-&rft.isbn=0769521320&rft.isbn_list=9780769521329&rft_id=info:doi/10.1109/IPDPS.2004.1303230&rft_dat=%3Cieee_6IE%3E1303230%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1303230&rfr_iscdi=true |