A method to diagnose faults in analog integrated circuits using artificial neural networks with pseudorandom noise as stimulus

This paper describes a new, fast and economical strategy for fault diagnosis of analog integrated circuits. The methodology is based on a technique of using a pseudo random noise generator as the test pattern generator and a model-based observer, which is implemented through a feed forward artificia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Barua, L., Kabisatpathy, P., Sinha, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 359 Vol.1
container_issue
container_start_page 356
container_title
container_volume 1
creator Barua, L.
Kabisatpathy, P.
Sinha, S.
description This paper describes a new, fast and economical strategy for fault diagnosis of analog integrated circuits. The methodology is based on a technique of using a pseudo random noise generator as the test pattern generator and a model-based observer, which is implemented through a feed forward artificial neural network in the form of a single hidden-layer perceptron. The proposed methodology can be implemented in any personal computer with a data acquisition card for on-line operation. Its main advantages are the low time requirement for learning and diagnosing. The method is quite robust and is able to detect small component variations without problems. This technique has been successfully applied to diagnose both hard and soft faults in a bipolar junction transistor based operational amplifier and a MOS operational amplifier.
doi_str_mv 10.1109/ICECS.2003.1302050
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1302050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1302050</ieee_id><sourcerecordid>1302050</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-73f72fb8e82cfbddf50011e9848dab47ee0dbe4d40b92536881a9eafac04acc23</originalsourceid><addsrcrecordid>eNotkEtLw0AUhQdE8NU_oJv5A613MnlMliVULRRcqOtyk7mTjiaZMg-KG3-7QXs234ED3-Iwdi9gJQTUj9tm07ytMgC5EhIyKOCC3UClQCpRyuqKLUL4hDmyzstSXbOfNR8pHpzm0XFtsZ9cIG4wDTFwO3GccHD93CL1HiNp3lnfJTuvKdip5-ijNbazOPCJkv9DPDn_FfjJxgM_BkraeZy0G_nk7GzHwEO0YxpSuGOXBodAizNv2cfT5r15We5en7fNere0oirispKmykyrSGWdabU2BYAQVKtcaWzzigh0S7nOoa2zQpZKCawJDXaQY9dl8pY9_HstEe2P3o7ov_fni-QvgvFhAQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A method to diagnose faults in analog integrated circuits using artificial neural networks with pseudorandom noise as stimulus</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Barua, L. ; Kabisatpathy, P. ; Sinha, S.</creator><creatorcontrib>Barua, L. ; Kabisatpathy, P. ; Sinha, S.</creatorcontrib><description>This paper describes a new, fast and economical strategy for fault diagnosis of analog integrated circuits. The methodology is based on a technique of using a pseudo random noise generator as the test pattern generator and a model-based observer, which is implemented through a feed forward artificial neural network in the form of a single hidden-layer perceptron. The proposed methodology can be implemented in any personal computer with a data acquisition card for on-line operation. Its main advantages are the low time requirement for learning and diagnosing. The method is quite robust and is able to detect small component variations without problems. This technique has been successfully applied to diagnose both hard and soft faults in a bipolar junction transistor based operational amplifier and a MOS operational amplifier.</description><identifier>ISBN: 0780381637</identifier><identifier>ISBN: 9780780381636</identifier><identifier>DOI: 10.1109/ICECS.2003.1302050</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analog integrated circuits ; Artificial neural networks ; Circuit faults ; Fault diagnosis ; Feeds ; Integrated circuit noise ; Microcomputers ; Noise generators ; Operational amplifiers ; Test pattern generators</subject><ispartof>10th IEEE International Conference on Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003, 2003, Vol.1, p.356-359 Vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1302050$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1302050$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Barua, L.</creatorcontrib><creatorcontrib>Kabisatpathy, P.</creatorcontrib><creatorcontrib>Sinha, S.</creatorcontrib><title>A method to diagnose faults in analog integrated circuits using artificial neural networks with pseudorandom noise as stimulus</title><title>10th IEEE International Conference on Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003</title><addtitle>ICECS</addtitle><description>This paper describes a new, fast and economical strategy for fault diagnosis of analog integrated circuits. The methodology is based on a technique of using a pseudo random noise generator as the test pattern generator and a model-based observer, which is implemented through a feed forward artificial neural network in the form of a single hidden-layer perceptron. The proposed methodology can be implemented in any personal computer with a data acquisition card for on-line operation. Its main advantages are the low time requirement for learning and diagnosing. The method is quite robust and is able to detect small component variations without problems. This technique has been successfully applied to diagnose both hard and soft faults in a bipolar junction transistor based operational amplifier and a MOS operational amplifier.</description><subject>Analog integrated circuits</subject><subject>Artificial neural networks</subject><subject>Circuit faults</subject><subject>Fault diagnosis</subject><subject>Feeds</subject><subject>Integrated circuit noise</subject><subject>Microcomputers</subject><subject>Noise generators</subject><subject>Operational amplifiers</subject><subject>Test pattern generators</subject><isbn>0780381637</isbn><isbn>9780780381636</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkEtLw0AUhQdE8NU_oJv5A613MnlMliVULRRcqOtyk7mTjiaZMg-KG3-7QXs234ED3-Iwdi9gJQTUj9tm07ytMgC5EhIyKOCC3UClQCpRyuqKLUL4hDmyzstSXbOfNR8pHpzm0XFtsZ9cIG4wDTFwO3GccHD93CL1HiNp3lnfJTuvKdip5-ijNbazOPCJkv9DPDn_FfjJxgM_BkraeZy0G_nk7GzHwEO0YxpSuGOXBodAizNv2cfT5r15We5en7fNere0oirispKmykyrSGWdabU2BYAQVKtcaWzzigh0S7nOoa2zQpZKCawJDXaQY9dl8pY9_HstEe2P3o7ov_fni-QvgvFhAQ</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Barua, L.</creator><creator>Kabisatpathy, P.</creator><creator>Sinha, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>A method to diagnose faults in analog integrated circuits using artificial neural networks with pseudorandom noise as stimulus</title><author>Barua, L. ; Kabisatpathy, P. ; Sinha, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-73f72fb8e82cfbddf50011e9848dab47ee0dbe4d40b92536881a9eafac04acc23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Analog integrated circuits</topic><topic>Artificial neural networks</topic><topic>Circuit faults</topic><topic>Fault diagnosis</topic><topic>Feeds</topic><topic>Integrated circuit noise</topic><topic>Microcomputers</topic><topic>Noise generators</topic><topic>Operational amplifiers</topic><topic>Test pattern generators</topic><toplevel>online_resources</toplevel><creatorcontrib>Barua, L.</creatorcontrib><creatorcontrib>Kabisatpathy, P.</creatorcontrib><creatorcontrib>Sinha, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Barua, L.</au><au>Kabisatpathy, P.</au><au>Sinha, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A method to diagnose faults in analog integrated circuits using artificial neural networks with pseudorandom noise as stimulus</atitle><btitle>10th IEEE International Conference on Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003</btitle><stitle>ICECS</stitle><date>2003</date><risdate>2003</risdate><volume>1</volume><spage>356</spage><epage>359 Vol.1</epage><pages>356-359 Vol.1</pages><isbn>0780381637</isbn><isbn>9780780381636</isbn><abstract>This paper describes a new, fast and economical strategy for fault diagnosis of analog integrated circuits. The methodology is based on a technique of using a pseudo random noise generator as the test pattern generator and a model-based observer, which is implemented through a feed forward artificial neural network in the form of a single hidden-layer perceptron. The proposed methodology can be implemented in any personal computer with a data acquisition card for on-line operation. Its main advantages are the low time requirement for learning and diagnosing. The method is quite robust and is able to detect small component variations without problems. This technique has been successfully applied to diagnose both hard and soft faults in a bipolar junction transistor based operational amplifier and a MOS operational amplifier.</abstract><pub>IEEE</pub><doi>10.1109/ICECS.2003.1302050</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780381637
ispartof 10th IEEE International Conference on Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003, 2003, Vol.1, p.356-359 Vol.1
issn
language eng
recordid cdi_ieee_primary_1302050
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Analog integrated circuits
Artificial neural networks
Circuit faults
Fault diagnosis
Feeds
Integrated circuit noise
Microcomputers
Noise generators
Operational amplifiers
Test pattern generators
title A method to diagnose faults in analog integrated circuits using artificial neural networks with pseudorandom noise as stimulus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20method%20to%20diagnose%20faults%20in%20analog%20integrated%20circuits%20using%20artificial%20neural%20networks%20with%20pseudorandom%20noise%20as%20stimulus&rft.btitle=10th%20IEEE%20International%20Conference%20on%20Electronics,%20Circuits%20and%20Systems,%202003.%20ICECS%202003.%20Proceedings%20of%20the%202003&rft.au=Barua,%20L.&rft.date=2003&rft.volume=1&rft.spage=356&rft.epage=359%20Vol.1&rft.pages=356-359%20Vol.1&rft.isbn=0780381637&rft.isbn_list=9780780381636&rft_id=info:doi/10.1109/ICECS.2003.1302050&rft_dat=%3Cieee_6IE%3E1302050%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1302050&rfr_iscdi=true