A neural network algorithm for hardware-software verification
Formal verification is the task of proving that a property holds for a model of a design. This paper examines the idea of a Neural Network-based algorithm used to find the set of states that makes a specification valid. The paper addresses a singular approach for those doing theoretical research for...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1335 Vol.3 |
---|---|
container_issue | |
container_start_page | 1332 |
container_title | |
container_volume | 3 |
creator | Rebaiaia, M.L. Jaam, J.M. Hasnah, A.M. |
description | Formal verification is the task of proving that a property holds for a model of a design. This paper examines the idea of a Neural Network-based algorithm used to find the set of states that makes a specification valid. The paper addresses a singular approach for those doing theoretical research for the verification of soft programs, and, for hardware designers. The approach of the application of the Artificial Neural Network is not new, but it becomes interesting if one can improve the truth-building efficiency by using some known artifices. Topics described include Integer Linear Programming, Propositional Logic, Model Checking, Satisfiability problems (SAT) and Artificial Neural Networks (ANN). |
doi_str_mv | 10.1109/ICECS.2003.1301761 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1301761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1301761</ieee_id><sourcerecordid>1301761</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5d41e7948ae19bd25da257dc8a4edf78a2ebc6eb29183eebbe3f4816b63c19b43</originalsourceid><addsrcrecordid>eNotj8FOwzAQRC0hJKD0B-DiH0jw2o7tHDhUUaGVKnEAztU6XlND2iAnUPH3BNG5vLnMaIaxGxAlgKjv1s2yeS6lEKoEJcAaOGNXwjqhHBhlL9h8GN7FJFVrY9wlu1_wA31l7CaMxz5_cOze-pzG3Z7HPvMd5nDETMXQx_HP8G_KKaYWx9Qfrtl5xG6g-Ykz9vqwfGlWxebpcd0sNkUCW41FFTSQrbVDgtoHWQWUlQ2tQ00hWoeSfGvIyxqcIvKeVNTTYG9UOwW0mrHb_95ERNvPnPaYf7anh-oXrdRIPQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A neural network algorithm for hardware-software verification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rebaiaia, M.L. ; Jaam, J.M. ; Hasnah, A.M.</creator><creatorcontrib>Rebaiaia, M.L. ; Jaam, J.M. ; Hasnah, A.M.</creatorcontrib><description>Formal verification is the task of proving that a property holds for a model of a design. This paper examines the idea of a Neural Network-based algorithm used to find the set of states that makes a specification valid. The paper addresses a singular approach for those doing theoretical research for the verification of soft programs, and, for hardware designers. The approach of the application of the Artificial Neural Network is not new, but it becomes interesting if one can improve the truth-building efficiency by using some known artifices. Topics described include Integer Linear Programming, Propositional Logic, Model Checking, Satisfiability problems (SAT) and Artificial Neural Networks (ANN).</description><identifier>ISBN: 0780381637</identifier><identifier>ISBN: 9780780381636</identifier><identifier>DOI: 10.1109/ICECS.2003.1301761</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algebra ; Artificial neural networks ; Circuits ; Computer science ; Formal verification ; Logic programming ; Logic testing ; Neural network hardware ; Neural networks ; Software algorithms</subject><ispartof>10th IEEE International Conference on Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003, 2003, Vol.3, p.1332-1335 Vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1301761$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1301761$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rebaiaia, M.L.</creatorcontrib><creatorcontrib>Jaam, J.M.</creatorcontrib><creatorcontrib>Hasnah, A.M.</creatorcontrib><title>A neural network algorithm for hardware-software verification</title><title>10th IEEE International Conference on Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003</title><addtitle>ICECS</addtitle><description>Formal verification is the task of proving that a property holds for a model of a design. This paper examines the idea of a Neural Network-based algorithm used to find the set of states that makes a specification valid. The paper addresses a singular approach for those doing theoretical research for the verification of soft programs, and, for hardware designers. The approach of the application of the Artificial Neural Network is not new, but it becomes interesting if one can improve the truth-building efficiency by using some known artifices. Topics described include Integer Linear Programming, Propositional Logic, Model Checking, Satisfiability problems (SAT) and Artificial Neural Networks (ANN).</description><subject>Algebra</subject><subject>Artificial neural networks</subject><subject>Circuits</subject><subject>Computer science</subject><subject>Formal verification</subject><subject>Logic programming</subject><subject>Logic testing</subject><subject>Neural network hardware</subject><subject>Neural networks</subject><subject>Software algorithms</subject><isbn>0780381637</isbn><isbn>9780780381636</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8FOwzAQRC0hJKD0B-DiH0jw2o7tHDhUUaGVKnEAztU6XlND2iAnUPH3BNG5vLnMaIaxGxAlgKjv1s2yeS6lEKoEJcAaOGNXwjqhHBhlL9h8GN7FJFVrY9wlu1_wA31l7CaMxz5_cOze-pzG3Z7HPvMd5nDETMXQx_HP8G_KKaYWx9Qfrtl5xG6g-Ykz9vqwfGlWxebpcd0sNkUCW41FFTSQrbVDgtoHWQWUlQ2tQ00hWoeSfGvIyxqcIvKeVNTTYG9UOwW0mrHb_95ERNvPnPaYf7anh-oXrdRIPQ</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Rebaiaia, M.L.</creator><creator>Jaam, J.M.</creator><creator>Hasnah, A.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>A neural network algorithm for hardware-software verification</title><author>Rebaiaia, M.L. ; Jaam, J.M. ; Hasnah, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5d41e7948ae19bd25da257dc8a4edf78a2ebc6eb29183eebbe3f4816b63c19b43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algebra</topic><topic>Artificial neural networks</topic><topic>Circuits</topic><topic>Computer science</topic><topic>Formal verification</topic><topic>Logic programming</topic><topic>Logic testing</topic><topic>Neural network hardware</topic><topic>Neural networks</topic><topic>Software algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Rebaiaia, M.L.</creatorcontrib><creatorcontrib>Jaam, J.M.</creatorcontrib><creatorcontrib>Hasnah, A.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rebaiaia, M.L.</au><au>Jaam, J.M.</au><au>Hasnah, A.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A neural network algorithm for hardware-software verification</atitle><btitle>10th IEEE International Conference on Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003</btitle><stitle>ICECS</stitle><date>2003</date><risdate>2003</risdate><volume>3</volume><spage>1332</spage><epage>1335 Vol.3</epage><pages>1332-1335 Vol.3</pages><isbn>0780381637</isbn><isbn>9780780381636</isbn><abstract>Formal verification is the task of proving that a property holds for a model of a design. This paper examines the idea of a Neural Network-based algorithm used to find the set of states that makes a specification valid. The paper addresses a singular approach for those doing theoretical research for the verification of soft programs, and, for hardware designers. The approach of the application of the Artificial Neural Network is not new, but it becomes interesting if one can improve the truth-building efficiency by using some known artifices. Topics described include Integer Linear Programming, Propositional Logic, Model Checking, Satisfiability problems (SAT) and Artificial Neural Networks (ANN).</abstract><pub>IEEE</pub><doi>10.1109/ICECS.2003.1301761</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780381637 |
ispartof | 10th IEEE International Conference on Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003, 2003, Vol.3, p.1332-1335 Vol.3 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1301761 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algebra Artificial neural networks Circuits Computer science Formal verification Logic programming Logic testing Neural network hardware Neural networks Software algorithms |
title | A neural network algorithm for hardware-software verification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A54%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20neural%20network%20algorithm%20for%20hardware-software%20verification&rft.btitle=10th%20IEEE%20International%20Conference%20on%20Electronics,%20Circuits%20and%20Systems,%202003.%20ICECS%202003.%20Proceedings%20of%20the%202003&rft.au=Rebaiaia,%20M.L.&rft.date=2003&rft.volume=3&rft.spage=1332&rft.epage=1335%20Vol.3&rft.pages=1332-1335%20Vol.3&rft.isbn=0780381637&rft.isbn_list=9780780381636&rft_id=info:doi/10.1109/ICECS.2003.1301761&rft_dat=%3Cieee_6IE%3E1301761%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1301761&rfr_iscdi=true |