A neural network algorithm for hardware-software verification

Formal verification is the task of proving that a property holds for a model of a design. This paper examines the idea of a Neural Network-based algorithm used to find the set of states that makes a specification valid. The paper addresses a singular approach for those doing theoretical research for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rebaiaia, M.L., Jaam, J.M., Hasnah, A.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1335 Vol.3
container_issue
container_start_page 1332
container_title
container_volume 3
creator Rebaiaia, M.L.
Jaam, J.M.
Hasnah, A.M.
description Formal verification is the task of proving that a property holds for a model of a design. This paper examines the idea of a Neural Network-based algorithm used to find the set of states that makes a specification valid. The paper addresses a singular approach for those doing theoretical research for the verification of soft programs, and, for hardware designers. The approach of the application of the Artificial Neural Network is not new, but it becomes interesting if one can improve the truth-building efficiency by using some known artifices. Topics described include Integer Linear Programming, Propositional Logic, Model Checking, Satisfiability problems (SAT) and Artificial Neural Networks (ANN).
doi_str_mv 10.1109/ICECS.2003.1301761
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1301761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1301761</ieee_id><sourcerecordid>1301761</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5d41e7948ae19bd25da257dc8a4edf78a2ebc6eb29183eebbe3f4816b63c19b43</originalsourceid><addsrcrecordid>eNotj8FOwzAQRC0hJKD0B-DiH0jw2o7tHDhUUaGVKnEAztU6XlND2iAnUPH3BNG5vLnMaIaxGxAlgKjv1s2yeS6lEKoEJcAaOGNXwjqhHBhlL9h8GN7FJFVrY9wlu1_wA31l7CaMxz5_cOze-pzG3Z7HPvMd5nDETMXQx_HP8G_KKaYWx9Qfrtl5xG6g-Ykz9vqwfGlWxebpcd0sNkUCW41FFTSQrbVDgtoHWQWUlQ2tQ00hWoeSfGvIyxqcIvKeVNTTYG9UOwW0mrHb_95ERNvPnPaYf7anh-oXrdRIPQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A neural network algorithm for hardware-software verification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rebaiaia, M.L. ; Jaam, J.M. ; Hasnah, A.M.</creator><creatorcontrib>Rebaiaia, M.L. ; Jaam, J.M. ; Hasnah, A.M.</creatorcontrib><description>Formal verification is the task of proving that a property holds for a model of a design. This paper examines the idea of a Neural Network-based algorithm used to find the set of states that makes a specification valid. The paper addresses a singular approach for those doing theoretical research for the verification of soft programs, and, for hardware designers. The approach of the application of the Artificial Neural Network is not new, but it becomes interesting if one can improve the truth-building efficiency by using some known artifices. Topics described include Integer Linear Programming, Propositional Logic, Model Checking, Satisfiability problems (SAT) and Artificial Neural Networks (ANN).</description><identifier>ISBN: 0780381637</identifier><identifier>ISBN: 9780780381636</identifier><identifier>DOI: 10.1109/ICECS.2003.1301761</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algebra ; Artificial neural networks ; Circuits ; Computer science ; Formal verification ; Logic programming ; Logic testing ; Neural network hardware ; Neural networks ; Software algorithms</subject><ispartof>10th IEEE International Conference on Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003, 2003, Vol.3, p.1332-1335 Vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1301761$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1301761$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rebaiaia, M.L.</creatorcontrib><creatorcontrib>Jaam, J.M.</creatorcontrib><creatorcontrib>Hasnah, A.M.</creatorcontrib><title>A neural network algorithm for hardware-software verification</title><title>10th IEEE International Conference on Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003</title><addtitle>ICECS</addtitle><description>Formal verification is the task of proving that a property holds for a model of a design. This paper examines the idea of a Neural Network-based algorithm used to find the set of states that makes a specification valid. The paper addresses a singular approach for those doing theoretical research for the verification of soft programs, and, for hardware designers. The approach of the application of the Artificial Neural Network is not new, but it becomes interesting if one can improve the truth-building efficiency by using some known artifices. Topics described include Integer Linear Programming, Propositional Logic, Model Checking, Satisfiability problems (SAT) and Artificial Neural Networks (ANN).</description><subject>Algebra</subject><subject>Artificial neural networks</subject><subject>Circuits</subject><subject>Computer science</subject><subject>Formal verification</subject><subject>Logic programming</subject><subject>Logic testing</subject><subject>Neural network hardware</subject><subject>Neural networks</subject><subject>Software algorithms</subject><isbn>0780381637</isbn><isbn>9780780381636</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8FOwzAQRC0hJKD0B-DiH0jw2o7tHDhUUaGVKnEAztU6XlND2iAnUPH3BNG5vLnMaIaxGxAlgKjv1s2yeS6lEKoEJcAaOGNXwjqhHBhlL9h8GN7FJFVrY9wlu1_wA31l7CaMxz5_cOze-pzG3Z7HPvMd5nDETMXQx_HP8G_KKaYWx9Qfrtl5xG6g-Ykz9vqwfGlWxebpcd0sNkUCW41FFTSQrbVDgtoHWQWUlQ2tQ00hWoeSfGvIyxqcIvKeVNTTYG9UOwW0mrHb_95ERNvPnPaYf7anh-oXrdRIPQ</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Rebaiaia, M.L.</creator><creator>Jaam, J.M.</creator><creator>Hasnah, A.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>A neural network algorithm for hardware-software verification</title><author>Rebaiaia, M.L. ; Jaam, J.M. ; Hasnah, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5d41e7948ae19bd25da257dc8a4edf78a2ebc6eb29183eebbe3f4816b63c19b43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algebra</topic><topic>Artificial neural networks</topic><topic>Circuits</topic><topic>Computer science</topic><topic>Formal verification</topic><topic>Logic programming</topic><topic>Logic testing</topic><topic>Neural network hardware</topic><topic>Neural networks</topic><topic>Software algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Rebaiaia, M.L.</creatorcontrib><creatorcontrib>Jaam, J.M.</creatorcontrib><creatorcontrib>Hasnah, A.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rebaiaia, M.L.</au><au>Jaam, J.M.</au><au>Hasnah, A.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A neural network algorithm for hardware-software verification</atitle><btitle>10th IEEE International Conference on Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003</btitle><stitle>ICECS</stitle><date>2003</date><risdate>2003</risdate><volume>3</volume><spage>1332</spage><epage>1335 Vol.3</epage><pages>1332-1335 Vol.3</pages><isbn>0780381637</isbn><isbn>9780780381636</isbn><abstract>Formal verification is the task of proving that a property holds for a model of a design. This paper examines the idea of a Neural Network-based algorithm used to find the set of states that makes a specification valid. The paper addresses a singular approach for those doing theoretical research for the verification of soft programs, and, for hardware designers. The approach of the application of the Artificial Neural Network is not new, but it becomes interesting if one can improve the truth-building efficiency by using some known artifices. Topics described include Integer Linear Programming, Propositional Logic, Model Checking, Satisfiability problems (SAT) and Artificial Neural Networks (ANN).</abstract><pub>IEEE</pub><doi>10.1109/ICECS.2003.1301761</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780381637
ispartof 10th IEEE International Conference on Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003, 2003, Vol.3, p.1332-1335 Vol.3
issn
language eng
recordid cdi_ieee_primary_1301761
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algebra
Artificial neural networks
Circuits
Computer science
Formal verification
Logic programming
Logic testing
Neural network hardware
Neural networks
Software algorithms
title A neural network algorithm for hardware-software verification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A54%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20neural%20network%20algorithm%20for%20hardware-software%20verification&rft.btitle=10th%20IEEE%20International%20Conference%20on%20Electronics,%20Circuits%20and%20Systems,%202003.%20ICECS%202003.%20Proceedings%20of%20the%202003&rft.au=Rebaiaia,%20M.L.&rft.date=2003&rft.volume=3&rft.spage=1332&rft.epage=1335%20Vol.3&rft.pages=1332-1335%20Vol.3&rft.isbn=0780381637&rft.isbn_list=9780780381636&rft_id=info:doi/10.1109/ICECS.2003.1301761&rft_dat=%3Cieee_6IE%3E1301761%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1301761&rfr_iscdi=true