Particle swarm optimizers for Pareto optimization with enhanced archiving techniques
During the last decade, numerous heuristic search methods for solving multi-objective optimization problems have been developed. Population oriented approaches such as evolutionary algorithms and particle swarm optimization can be distinguished into the class of archive-based algorithms and algorith...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1787 Vol.3 |
---|---|
container_issue | |
container_start_page | 1780 |
container_title | |
container_volume | 3 |
creator | Bartz-Beielstein, T. Limbourg, P. Mehnen, J. Schmitt, K. Parsopoulos, K.E. Vrahatis, M.N. |
description | During the last decade, numerous heuristic search methods for solving multi-objective optimization problems have been developed. Population oriented approaches such as evolutionary algorithms and particle swarm optimization can be distinguished into the class of archive-based algorithms and algorithms without archive. While the latter may lose the best solutions found so far, archive based algorithms keep track of these solutions. In this article, a new particle swarm optimization technique, called DOPS, for multi-objective optimization problems is proposed. DOPS integrates well-known archiving techniques from evolutionary algorithms into particle swarm optimization. Modifications and extensions of the archiving techniques are empirically analyzed and several test functions are used to illustrate the usability of the proposed approach. A statistical analysis of the obtained results is presented. The article concludes with a discussion of the obtained results as well as ideas for further research. |
doi_str_mv | 10.1109/CEC.2003.1299888 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1299888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1299888</ieee_id><sourcerecordid>1299888</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-53aee6bcf495a7f3d6ce901ffa7591b47113ef951e08f653d4fe3c6b976eaa073</originalsourceid><addsrcrecordid>eNo1j0FLxDAUhAMiqOveBS_5A60vTdM0RymrLizoYT0vr-mLjWzbNYku-ustuA4MA9_AwDB2IyAXAsxds2ryAkDmojCmruszdgW6Bjm7hAu2jPEdZpVKGqUv2fYFQ_J2TzweMQx8OiQ_-B8Kkbsp8LmlNP1TTH4a-dGnntPY42ip4xhs77_8-MYT2X70H58Ur9m5w32k5SkX7PVhtW2ess3z47q532S-EDplSiJR1VpXGoXaya6yZEA4h1oZ0ZZaCEnOKEFQu0rJrnQkbdUaXREiaLlgt3-7noh2h-AHDN-703H5C3U2UJE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Particle swarm optimizers for Pareto optimization with enhanced archiving techniques</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bartz-Beielstein, T. ; Limbourg, P. ; Mehnen, J. ; Schmitt, K. ; Parsopoulos, K.E. ; Vrahatis, M.N.</creator><creatorcontrib>Bartz-Beielstein, T. ; Limbourg, P. ; Mehnen, J. ; Schmitt, K. ; Parsopoulos, K.E. ; Vrahatis, M.N.</creatorcontrib><description>During the last decade, numerous heuristic search methods for solving multi-objective optimization problems have been developed. Population oriented approaches such as evolutionary algorithms and particle swarm optimization can be distinguished into the class of archive-based algorithms and algorithms without archive. While the latter may lose the best solutions found so far, archive based algorithms keep track of these solutions. In this article, a new particle swarm optimization technique, called DOPS, for multi-objective optimization problems is proposed. DOPS integrates well-known archiving techniques from evolutionary algorithms into particle swarm optimization. Modifications and extensions of the archiving techniques are empirically analyzed and several test functions are used to illustrate the usability of the proposed approach. A statistical analysis of the obtained results is presented. The article concludes with a discussion of the obtained results as well as ideas for further research.</description><identifier>ISBN: 0780378040</identifier><identifier>ISBN: 9780780378049</identifier><identifier>DOI: 10.1109/CEC.2003.1299888</identifier><language>eng</language><publisher>IEEE</publisher><subject>Birds ; Evolutionary computation ; Mathematics ; Optimization methods ; Pareto analysis ; Pareto optimization ; Particle swarm optimization ; Search methods ; Testing ; Usability</subject><ispartof>The 2003 Congress on Evolutionary Computation, 2003. CEC '03, 2003, Vol.3, p.1780-1787 Vol.3</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1299888$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,4049,4050,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1299888$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bartz-Beielstein, T.</creatorcontrib><creatorcontrib>Limbourg, P.</creatorcontrib><creatorcontrib>Mehnen, J.</creatorcontrib><creatorcontrib>Schmitt, K.</creatorcontrib><creatorcontrib>Parsopoulos, K.E.</creatorcontrib><creatorcontrib>Vrahatis, M.N.</creatorcontrib><title>Particle swarm optimizers for Pareto optimization with enhanced archiving techniques</title><title>The 2003 Congress on Evolutionary Computation, 2003. CEC '03</title><addtitle>CEC</addtitle><description>During the last decade, numerous heuristic search methods for solving multi-objective optimization problems have been developed. Population oriented approaches such as evolutionary algorithms and particle swarm optimization can be distinguished into the class of archive-based algorithms and algorithms without archive. While the latter may lose the best solutions found so far, archive based algorithms keep track of these solutions. In this article, a new particle swarm optimization technique, called DOPS, for multi-objective optimization problems is proposed. DOPS integrates well-known archiving techniques from evolutionary algorithms into particle swarm optimization. Modifications and extensions of the archiving techniques are empirically analyzed and several test functions are used to illustrate the usability of the proposed approach. A statistical analysis of the obtained results is presented. The article concludes with a discussion of the obtained results as well as ideas for further research.</description><subject>Birds</subject><subject>Evolutionary computation</subject><subject>Mathematics</subject><subject>Optimization methods</subject><subject>Pareto analysis</subject><subject>Pareto optimization</subject><subject>Particle swarm optimization</subject><subject>Search methods</subject><subject>Testing</subject><subject>Usability</subject><isbn>0780378040</isbn><isbn>9780780378049</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j0FLxDAUhAMiqOveBS_5A60vTdM0RymrLizoYT0vr-mLjWzbNYku-ustuA4MA9_AwDB2IyAXAsxds2ryAkDmojCmruszdgW6Bjm7hAu2jPEdZpVKGqUv2fYFQ_J2TzweMQx8OiQ_-B8Kkbsp8LmlNP1TTH4a-dGnntPY42ip4xhs77_8-MYT2X70H58Ur9m5w32k5SkX7PVhtW2ess3z47q532S-EDplSiJR1VpXGoXaya6yZEA4h1oZ0ZZaCEnOKEFQu0rJrnQkbdUaXREiaLlgt3-7noh2h-AHDN-703H5C3U2UJE</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Bartz-Beielstein, T.</creator><creator>Limbourg, P.</creator><creator>Mehnen, J.</creator><creator>Schmitt, K.</creator><creator>Parsopoulos, K.E.</creator><creator>Vrahatis, M.N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Particle swarm optimizers for Pareto optimization with enhanced archiving techniques</title><author>Bartz-Beielstein, T. ; Limbourg, P. ; Mehnen, J. ; Schmitt, K. ; Parsopoulos, K.E. ; Vrahatis, M.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-53aee6bcf495a7f3d6ce901ffa7591b47113ef951e08f653d4fe3c6b976eaa073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Birds</topic><topic>Evolutionary computation</topic><topic>Mathematics</topic><topic>Optimization methods</topic><topic>Pareto analysis</topic><topic>Pareto optimization</topic><topic>Particle swarm optimization</topic><topic>Search methods</topic><topic>Testing</topic><topic>Usability</topic><toplevel>online_resources</toplevel><creatorcontrib>Bartz-Beielstein, T.</creatorcontrib><creatorcontrib>Limbourg, P.</creatorcontrib><creatorcontrib>Mehnen, J.</creatorcontrib><creatorcontrib>Schmitt, K.</creatorcontrib><creatorcontrib>Parsopoulos, K.E.</creatorcontrib><creatorcontrib>Vrahatis, M.N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bartz-Beielstein, T.</au><au>Limbourg, P.</au><au>Mehnen, J.</au><au>Schmitt, K.</au><au>Parsopoulos, K.E.</au><au>Vrahatis, M.N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Particle swarm optimizers for Pareto optimization with enhanced archiving techniques</atitle><btitle>The 2003 Congress on Evolutionary Computation, 2003. CEC '03</btitle><stitle>CEC</stitle><date>2003</date><risdate>2003</risdate><volume>3</volume><spage>1780</spage><epage>1787 Vol.3</epage><pages>1780-1787 Vol.3</pages><isbn>0780378040</isbn><isbn>9780780378049</isbn><abstract>During the last decade, numerous heuristic search methods for solving multi-objective optimization problems have been developed. Population oriented approaches such as evolutionary algorithms and particle swarm optimization can be distinguished into the class of archive-based algorithms and algorithms without archive. While the latter may lose the best solutions found so far, archive based algorithms keep track of these solutions. In this article, a new particle swarm optimization technique, called DOPS, for multi-objective optimization problems is proposed. DOPS integrates well-known archiving techniques from evolutionary algorithms into particle swarm optimization. Modifications and extensions of the archiving techniques are empirically analyzed and several test functions are used to illustrate the usability of the proposed approach. A statistical analysis of the obtained results is presented. The article concludes with a discussion of the obtained results as well as ideas for further research.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2003.1299888</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780378040 |
ispartof | The 2003 Congress on Evolutionary Computation, 2003. CEC '03, 2003, Vol.3, p.1780-1787 Vol.3 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1299888 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Birds Evolutionary computation Mathematics Optimization methods Pareto analysis Pareto optimization Particle swarm optimization Search methods Testing Usability |
title | Particle swarm optimizers for Pareto optimization with enhanced archiving techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Particle%20swarm%20optimizers%20for%20Pareto%20optimization%20with%20enhanced%20archiving%20techniques&rft.btitle=The%202003%20Congress%20on%20Evolutionary%20Computation,%202003.%20CEC%20'03&rft.au=Bartz-Beielstein,%20T.&rft.date=2003&rft.volume=3&rft.spage=1780&rft.epage=1787%20Vol.3&rft.pages=1780-1787%20Vol.3&rft.isbn=0780378040&rft.isbn_list=9780780378049&rft_id=info:doi/10.1109/CEC.2003.1299888&rft_dat=%3Cieee_6IE%3E1299888%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1299888&rfr_iscdi=true |