Particle swarm optimizers for Pareto optimization with enhanced archiving techniques

During the last decade, numerous heuristic search methods for solving multi-objective optimization problems have been developed. Population oriented approaches such as evolutionary algorithms and particle swarm optimization can be distinguished into the class of archive-based algorithms and algorith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bartz-Beielstein, T., Limbourg, P., Mehnen, J., Schmitt, K., Parsopoulos, K.E., Vrahatis, M.N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1787 Vol.3
container_issue
container_start_page 1780
container_title
container_volume 3
creator Bartz-Beielstein, T.
Limbourg, P.
Mehnen, J.
Schmitt, K.
Parsopoulos, K.E.
Vrahatis, M.N.
description During the last decade, numerous heuristic search methods for solving multi-objective optimization problems have been developed. Population oriented approaches such as evolutionary algorithms and particle swarm optimization can be distinguished into the class of archive-based algorithms and algorithms without archive. While the latter may lose the best solutions found so far, archive based algorithms keep track of these solutions. In this article, a new particle swarm optimization technique, called DOPS, for multi-objective optimization problems is proposed. DOPS integrates well-known archiving techniques from evolutionary algorithms into particle swarm optimization. Modifications and extensions of the archiving techniques are empirically analyzed and several test functions are used to illustrate the usability of the proposed approach. A statistical analysis of the obtained results is presented. The article concludes with a discussion of the obtained results as well as ideas for further research.
doi_str_mv 10.1109/CEC.2003.1299888
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1299888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1299888</ieee_id><sourcerecordid>1299888</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-53aee6bcf495a7f3d6ce901ffa7591b47113ef951e08f653d4fe3c6b976eaa073</originalsourceid><addsrcrecordid>eNo1j0FLxDAUhAMiqOveBS_5A60vTdM0RymrLizoYT0vr-mLjWzbNYku-ustuA4MA9_AwDB2IyAXAsxds2ryAkDmojCmruszdgW6Bjm7hAu2jPEdZpVKGqUv2fYFQ_J2TzweMQx8OiQ_-B8Kkbsp8LmlNP1TTH4a-dGnntPY42ip4xhs77_8-MYT2X70H58Ur9m5w32k5SkX7PVhtW2ess3z47q532S-EDplSiJR1VpXGoXaya6yZEA4h1oZ0ZZaCEnOKEFQu0rJrnQkbdUaXREiaLlgt3-7noh2h-AHDN-703H5C3U2UJE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Particle swarm optimizers for Pareto optimization with enhanced archiving techniques</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bartz-Beielstein, T. ; Limbourg, P. ; Mehnen, J. ; Schmitt, K. ; Parsopoulos, K.E. ; Vrahatis, M.N.</creator><creatorcontrib>Bartz-Beielstein, T. ; Limbourg, P. ; Mehnen, J. ; Schmitt, K. ; Parsopoulos, K.E. ; Vrahatis, M.N.</creatorcontrib><description>During the last decade, numerous heuristic search methods for solving multi-objective optimization problems have been developed. Population oriented approaches such as evolutionary algorithms and particle swarm optimization can be distinguished into the class of archive-based algorithms and algorithms without archive. While the latter may lose the best solutions found so far, archive based algorithms keep track of these solutions. In this article, a new particle swarm optimization technique, called DOPS, for multi-objective optimization problems is proposed. DOPS integrates well-known archiving techniques from evolutionary algorithms into particle swarm optimization. Modifications and extensions of the archiving techniques are empirically analyzed and several test functions are used to illustrate the usability of the proposed approach. A statistical analysis of the obtained results is presented. The article concludes with a discussion of the obtained results as well as ideas for further research.</description><identifier>ISBN: 0780378040</identifier><identifier>ISBN: 9780780378049</identifier><identifier>DOI: 10.1109/CEC.2003.1299888</identifier><language>eng</language><publisher>IEEE</publisher><subject>Birds ; Evolutionary computation ; Mathematics ; Optimization methods ; Pareto analysis ; Pareto optimization ; Particle swarm optimization ; Search methods ; Testing ; Usability</subject><ispartof>The 2003 Congress on Evolutionary Computation, 2003. CEC '03, 2003, Vol.3, p.1780-1787 Vol.3</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1299888$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,4049,4050,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1299888$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bartz-Beielstein, T.</creatorcontrib><creatorcontrib>Limbourg, P.</creatorcontrib><creatorcontrib>Mehnen, J.</creatorcontrib><creatorcontrib>Schmitt, K.</creatorcontrib><creatorcontrib>Parsopoulos, K.E.</creatorcontrib><creatorcontrib>Vrahatis, M.N.</creatorcontrib><title>Particle swarm optimizers for Pareto optimization with enhanced archiving techniques</title><title>The 2003 Congress on Evolutionary Computation, 2003. CEC '03</title><addtitle>CEC</addtitle><description>During the last decade, numerous heuristic search methods for solving multi-objective optimization problems have been developed. Population oriented approaches such as evolutionary algorithms and particle swarm optimization can be distinguished into the class of archive-based algorithms and algorithms without archive. While the latter may lose the best solutions found so far, archive based algorithms keep track of these solutions. In this article, a new particle swarm optimization technique, called DOPS, for multi-objective optimization problems is proposed. DOPS integrates well-known archiving techniques from evolutionary algorithms into particle swarm optimization. Modifications and extensions of the archiving techniques are empirically analyzed and several test functions are used to illustrate the usability of the proposed approach. A statistical analysis of the obtained results is presented. The article concludes with a discussion of the obtained results as well as ideas for further research.</description><subject>Birds</subject><subject>Evolutionary computation</subject><subject>Mathematics</subject><subject>Optimization methods</subject><subject>Pareto analysis</subject><subject>Pareto optimization</subject><subject>Particle swarm optimization</subject><subject>Search methods</subject><subject>Testing</subject><subject>Usability</subject><isbn>0780378040</isbn><isbn>9780780378049</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j0FLxDAUhAMiqOveBS_5A60vTdM0RymrLizoYT0vr-mLjWzbNYku-ustuA4MA9_AwDB2IyAXAsxds2ryAkDmojCmruszdgW6Bjm7hAu2jPEdZpVKGqUv2fYFQ_J2TzweMQx8OiQ_-B8Kkbsp8LmlNP1TTH4a-dGnntPY42ip4xhs77_8-MYT2X70H58Ur9m5w32k5SkX7PVhtW2ess3z47q532S-EDplSiJR1VpXGoXaya6yZEA4h1oZ0ZZaCEnOKEFQu0rJrnQkbdUaXREiaLlgt3-7noh2h-AHDN-703H5C3U2UJE</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Bartz-Beielstein, T.</creator><creator>Limbourg, P.</creator><creator>Mehnen, J.</creator><creator>Schmitt, K.</creator><creator>Parsopoulos, K.E.</creator><creator>Vrahatis, M.N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Particle swarm optimizers for Pareto optimization with enhanced archiving techniques</title><author>Bartz-Beielstein, T. ; Limbourg, P. ; Mehnen, J. ; Schmitt, K. ; Parsopoulos, K.E. ; Vrahatis, M.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-53aee6bcf495a7f3d6ce901ffa7591b47113ef951e08f653d4fe3c6b976eaa073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Birds</topic><topic>Evolutionary computation</topic><topic>Mathematics</topic><topic>Optimization methods</topic><topic>Pareto analysis</topic><topic>Pareto optimization</topic><topic>Particle swarm optimization</topic><topic>Search methods</topic><topic>Testing</topic><topic>Usability</topic><toplevel>online_resources</toplevel><creatorcontrib>Bartz-Beielstein, T.</creatorcontrib><creatorcontrib>Limbourg, P.</creatorcontrib><creatorcontrib>Mehnen, J.</creatorcontrib><creatorcontrib>Schmitt, K.</creatorcontrib><creatorcontrib>Parsopoulos, K.E.</creatorcontrib><creatorcontrib>Vrahatis, M.N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bartz-Beielstein, T.</au><au>Limbourg, P.</au><au>Mehnen, J.</au><au>Schmitt, K.</au><au>Parsopoulos, K.E.</au><au>Vrahatis, M.N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Particle swarm optimizers for Pareto optimization with enhanced archiving techniques</atitle><btitle>The 2003 Congress on Evolutionary Computation, 2003. CEC '03</btitle><stitle>CEC</stitle><date>2003</date><risdate>2003</risdate><volume>3</volume><spage>1780</spage><epage>1787 Vol.3</epage><pages>1780-1787 Vol.3</pages><isbn>0780378040</isbn><isbn>9780780378049</isbn><abstract>During the last decade, numerous heuristic search methods for solving multi-objective optimization problems have been developed. Population oriented approaches such as evolutionary algorithms and particle swarm optimization can be distinguished into the class of archive-based algorithms and algorithms without archive. While the latter may lose the best solutions found so far, archive based algorithms keep track of these solutions. In this article, a new particle swarm optimization technique, called DOPS, for multi-objective optimization problems is proposed. DOPS integrates well-known archiving techniques from evolutionary algorithms into particle swarm optimization. Modifications and extensions of the archiving techniques are empirically analyzed and several test functions are used to illustrate the usability of the proposed approach. A statistical analysis of the obtained results is presented. The article concludes with a discussion of the obtained results as well as ideas for further research.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2003.1299888</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780378040
ispartof The 2003 Congress on Evolutionary Computation, 2003. CEC '03, 2003, Vol.3, p.1780-1787 Vol.3
issn
language eng
recordid cdi_ieee_primary_1299888
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Birds
Evolutionary computation
Mathematics
Optimization methods
Pareto analysis
Pareto optimization
Particle swarm optimization
Search methods
Testing
Usability
title Particle swarm optimizers for Pareto optimization with enhanced archiving techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Particle%20swarm%20optimizers%20for%20Pareto%20optimization%20with%20enhanced%20archiving%20techniques&rft.btitle=The%202003%20Congress%20on%20Evolutionary%20Computation,%202003.%20CEC%20'03&rft.au=Bartz-Beielstein,%20T.&rft.date=2003&rft.volume=3&rft.spage=1780&rft.epage=1787%20Vol.3&rft.pages=1780-1787%20Vol.3&rft.isbn=0780378040&rft.isbn_list=9780780378049&rft_id=info:doi/10.1109/CEC.2003.1299888&rft_dat=%3Cieee_6IE%3E1299888%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1299888&rfr_iscdi=true