A genetic hill climbing method for function optimization using a neighborhood based on interactions among parameters

Most conventional genetic algorithms (GAs) for function optimization always search all parameters simultaneously. As the result, the search space size increases exponentially with the number of parameters. Therefore, the search efficiency of these GAs deteriorates in high-dimensional function optimi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Takeichi, H., Mizuguchi, N., Ono, I., Ono, N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!